1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oksi-84 [34.3K]
3 years ago
5

1

Physics
1 answer:
Darya [45]3 years ago
3 0
  • Mass=0.25kg
  • Force=95N

\\ \bull\sf\dashrightarrow F=ma

\\ \bull\sf\dashrightarrow a=\dfrac{F}{m}

\\ \bull\sf\dashrightarrow a=\dfrac{95}{0.25}

\\ \bull\sf\dashrightarrow a=380m/s^2

You might be interested in
The time between a lightning flash and the following thunderclap may be used to estimate, in kilometers, how far away a storm is
Kruka [31]

Given Information:  

Elapsed time = t = 6 seconds

Required Information:

Distance = d = ?

Answer:

Distance = d = 2.058 km

Explanation:

We know that the speed of sound in the air is given by

v = 343 m/s

The relation between distance, speed and time is given by

distance = speed*time

substituting the given values yields,

distance = 343*6

distance = 2058 m

There are 1000 meters in 1 km so

d = 2058/1000

d = 2.058 km

Therefore, the storm is about 2.058 km away when elapse time between the lightning and the thunderclap is 6 seconds.

3 0
3 years ago
What are machines fueled by?
Ilia_Sergeevich [38]
(AB) & (CD)
Most machines are fueled by gasoline and electricity
3 0
3 years ago
Read 2 more answers
The international space station makes 15.65 revolutions per day in its orbit around the earth. assuming a circular orbit, how hi
sweet-ann [11.9K]
<span>373.2 km The formula for velocity at any point within an orbit is v = sqrt(mu(2/r - 1/a)) where v = velocity mu = standard gravitational parameter (GM) r = radius satellite currently at a = semi-major axis Since the orbit is assumed to be circular, the equation is simplified to v = sqrt(mu/r) The value of mu for earth is 3.986004419 Ă— 10^14 m^3/s^2 Now we need to figure out how many seconds one orbit of the space station takes. So 86400 / 15.65 = 5520.767 seconds And the distance the space station travels is 2 pi r, and since velocity is distance divided by time, we get the following as the station's velocity 2 pi r / 5520.767 Finally, combining all that gets us the following equality v = 2 pi r / 5520.767 v = sqrt(mu/r) mu = 3.986004419 Ă— 10^14 m^3/s^2 2 pi r / 5520.767 s = sqrt(3.986004419 * 10^14 m^3/s^2 / r) Square both sides 1.29527 * 10^-6 r^2 s^2 = 3.986004419 * 10^14 m^3/s^2 / r Multiply both sides by r 1.29527 * 10^-6 r^3 s^2 = 3.986004419 * 10^14 m^3/s^2 Divide both sides by 1.29527 * 10^-6 s^2 r^3 = 3.0773498781296 * 10^20 m^3 Take the cube root of both sides r = 6751375.945 m Since we actually want how far from the surface of the earth the space station is, we now subtract the radius of the earth from the radius of the orbit. For this problem, I'll be using the equatorial radius. So 6751375.945 m - 6378137.0 m = 373238.945 m Converting to kilometers and rounding to 4 significant figures gives 373.2 km</span>
7 0
3 years ago
Read 2 more answers
What is the velocity of an object with a kinetic energy of 800 J and a mass of 12 kg?
Elis [28]

K.E = 1/2 mv²

800 = 1/2 ×12 ×v²

800 =  6 v²

800 / 6  =  v²

=   133.4    =v²

√133.4  =   √v²

11.5   =  v²

I hope this answer is correct.

3 0
3 years ago
HELP ASAP TIMED TEST
balu736 [363]

Answer:

<em>Correct choice: b 4H</em>

Explanation:

<u>Conservation of the mechanical energy</u>

The mechanical energy is the sum of the gravitational potential energy GPE (U) and the kinetic energy KE (K):

E = U + K

The GPE is calculated as:

U = mgh

And the kinetic energy is:

\displaystyle K=\frac{1}{2}mv^2

Where:

m = mass of the object

g = gravitational acceleration

h = height of the object

v = speed at which the object moves

When the snowball is dropped from a height H, it has zero speed and therefore zero kinetic energy, thus the mechanical energy is:

U_1 = mgH

When the snowball reaches the ground, the height is zero and the GPE is also zero, thus the mechanical energy is:

\displaystyle U_2=\frac{1}{2}mv^2

Since the energy is conserved, U1=U2

\displaystyle mgH=\frac{1}{2}mv^2    \qquad\qquad [1]

For the speed to be double, we need to drop the snowball from a height H', and:

\displaystyle mgH'=\frac{1}{2}m(2v)^2

Operating:

\displaystyle mgH'=4\frac{1}{2}m(v)^2 \qquad\qquad [2]

Dividing [2] by [1]

\displaystyle \frac{mgH'}{mgH}=\frac{4\frac{1}{2}m(v)^2}{\frac{1}{2}m(v)^2}

Simplifying:

\displaystyle \frac{H'}{H}=4

Thus:

H' = 4H

Correct choice: b 4H

4 0
3 years ago
Other questions:
  • Which describes newton’s law of universal gravitation?
    6·1 answer
  • New York’s Finger Lakes were formed by the same process as the Great Lakes.
    14·2 answers
  • In the figure, a 3.7 kg block slides along a track from one level to a higher level after passing through an intermediate valley
    7·1 answer
  • students make a small elevator machine with 5 kg and 10 kg masses on either side how fast will the masses accelerate once they a
    8·1 answer
  • A downed pilot fires a flare from a flare gun. The flare an initial speed of 250 m/s and is fired at an angle of 35° to the grou
    13·2 answers
  • 1. A roller coaster car rapidly picks up speed as it rolls down a slope. As it starts down the slope, its
    7·2 answers
  • _____is the most abused of all fossil fuels <br> A.Gasoline<br> B.Coal<br> CPeat<br> D petroleum
    14·1 answer
  • Question 25
    10·1 answer
  • figure shows four situations in which a horizontal net force acts on the same block which is initially at rest
    14·1 answer
  • an airplane flying due north at 90. km/h is being blown due west at 50. km/h. what is the resultant velocity of the plane?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!