Let us assume that rocket only runs in initial energy and not using its own to flying.
Also , let upward direction is +ve and downward direction is -ve .
Initial velocity , u = 58.8 m/s .
Acceleration due to gravity ,
.
Final velocity , v - = 0 m/s .
We know , by equation of motion .

Hence, this is the required solution .
Answer:
It increases to three times it's original value.
Explanation:
B
<u>C</u> is the correct answer, because energy cannot be created neither destroy. The energy is changing from chemical to from electric to light, and from light to heat.
Answer:

where E = electric field intensity
Explanation:
As we know that plastic ball is suspended by a string which makes 30 degree angle with the vertical
So here force due to electrostatic force on the charged ball is in horizontal direction along the direction of electric field
while weight of the ball is vertically downwards
so here we have


since string makes 30 degree angle with the vertical so we will have





where E = electric field intensity
Answer:
1.) 11 km/s
2.) 9.03 × 10^-5 metres
Explanation:
Given that an electron enters a region of uniform electric field with an initial velocity of 64 km/s in the same direction as the electric field, which has magnitude E = 48 N/C.
Electron q = 1.6×10^-19 C
Electron mass = 9.11×10^-31 Kg
(a) What is the speed of the electron 1.3 ns after entering this region?
E = F/q
F = Eq
Ma = Eq
M × V/t = Eq
Substitute all the parameters into the formula
9.11×10^-31 × V/1.3×10^-9 = 48 × 1.6×10^-19
V = 7.68×10^-18 /7.0×10^-22
V = 10971.43 m/s
V = 11 Km/s approximately
(b) How far does the electron travel during the 1.3 ns interval?
The initial velocity U = 64 km/s
S = ut + 1/2at^2
S = 64000×1.3×10^-6 + 1/2 × 8.4×10^12 × ( 1.3×10^-9)^2
S =8.32×10^-5 + 7.13×10^-6
S = 9.03 × 10^-5 metres