<span>
</span>
Gravity affects weight because gravity creates weight. Objects have mass, which is defined as how much matter an object contains. Weight is defined as the pull of gravity on mass.
<span>
The relation between weight and gravitational pull is such that, when on another celestial body, the difference in gravity would alter a person's weight. The Earth's moon, for example, has a gravitational field that is 0.165 times the pull on earth. A person who weighs 170 pounds on Earth would only weigh 28.05 pounds on the moon. This is why during the moon landing videos, people on earth viewed the astronauts taking large, bounding steps. With very little weight, it was easy for them to push off the ground.</span>
Answer:
(c) no different than on a low-pressure day.
Explanation:
The force acting on the ship when it floats in water is the buoyant force. According to the Archimedes' principle: The magnitude of buoyant force acting on the body of the object is equal to the volume displaced by the object.
Thus, Buoyant forces are a volume phenomenon and is determined by the volume of the fluid displaced.
<u>Whether it is a high pressure day or a low pressure day, the level of the floating ship is unaffected because the increased or decreased pressure at the all the points of the water and the ship and there will be no change in the volume of the water displaced by the ship.</u>
G=mg=>m=G/g=16680/9.8=1702 kg
p=mv=>v=p/m=54400/1702=32 m/s
The amount of energy in food is measured in calories.
Wats and kilowatts are units for electricity. Grams are a unit of mass.
Answer:
- Distance is a scalar quantity, defined as the total amount of space covered by an object while moving between the final position and the initial position. Therefore, it depends on the path the object has taken: the distance will be minimum if the object has travelled in a straight line, while it will be larger if the object has taken a non-straight path.
- Displacement is a vector quantity, whose magnitude is equal to the distance (measured in a straight line) between the final position and the initial position of the object. Therefore, the displacement does NOT depend on the path taken, but only on the initial and final point of the motion.
If the object has travelled in a straight path, then the displacement is equal to the distance. In all other cases, the distance is always larger than the displacement.
A particular case is when an object travel in a circular motion. Assuming the object completes one full circle, we have:
- The distance is the circumference of the circle
- The displacement is zero, because the final point corresponds to the initial point