Answer:
29.6 kg
Explanation:
Centripetal force = mass × centripetal acceleration
F = m v² / r
88.0 N = m (2.50 m/s)² / 2.10 m
m = 29.6 kg
The question is incomplete. The complete question is :
The pressure difference, Δp, ac
ross a partial blockage in an artery (called a stenosis) is approximated by the equation :

Where V is the blood velocity, μ the blood viscosity {FT/L2}, ρ the blood density {M/L3}, D the artery diameter,
the area of the unobstructed artery, and A1 the area of the stenosis. Determine the dimensions of the constants
and
. Would this equation be valid in any system of units?
Solution :
From the dimension homogeneity, we require :

Here, x means dimension of x. i.e.
![$[ML^{-1}T^{-2}]=\frac{[K_v][ML^{-1}T^{-1}][LT^{-1}]}{[L]}+[K_u][1][ML^{-3}][L^2T^{-2}]$](https://tex.z-dn.net/?f=%24%5BML%5E%7B-1%7DT%5E%7B-2%7D%5D%3D%5Cfrac%7B%5BK_v%5D%5BML%5E%7B-1%7DT%5E%7B-1%7D%5D%5BLT%5E%7B-1%7D%5D%7D%7B%5BL%5D%7D%2B%5BK_u%5D%5B1%5D%5BML%5E%7B-3%7D%5D%5BL%5E2T%5E%7B-2%7D%5D%24)
![$=[K_v][ML^{-1}T^{-2}]+[K_u][ML^{-1}T^{-2}]$](https://tex.z-dn.net/?f=%24%3D%5BK_v%5D%5BML%5E%7B-1%7DT%5E%7B-2%7D%5D%2B%5BK_u%5D%5BML%5E%7B-1%7DT%5E%7B-2%7D%5D%24)
So,
dimensionless
So,
and
are dimensionless constants.
This equation will be working in any system of units. The constants
and
will be different for different system of units.
Answer: It will fall short of its goal.
Explanation: I took the quiz.
Explanation:
(c) I assume we're looking for mA.
Sum of forces on B in the -y direction:
∑F = ma
mBg − T = mBa
Sum of forces on A in the +x direction:
∑F = ma
T = mAa
Substitute:
mBg − mAa = mBa
mBg − mBa = mAa
mA = mB (g − a) / a
Plug in values:
mA = (5 kg) (10 m/s² − 0.01 (10 m/s²)) / (0.01 (10 m/s²))
mA = 495 kg
The answer key seems to have a mistake. It's possible they meant mB = 1 kg, or they changed mB to 5 kg but forgot to change the answer.
<h3>
Answer:</h3>
<h3>
Explanation:</h3>
_______________
S=3 m²
F=900 N
_______________
p - ?
_______________
p=F/S=900 N / 3 m² = 300 Pa