Answer:
Fx1 (6 m) sin 60 = 300 (3 m) cos 60 balancing torques about floor
Fx1 = 900 * 1/2 / 5.20 = 86.6 N this is the horizontal force that must be supplied by the wall to balance torques about the floor
This is also equal to the static force of friction that must be applied at the point of contact with the floor to balance forces in the x-direction.
Fx1 = Fx2 = 86.6 N
The spring scale will read 559 Newton's or 125.7 pounds.
The answer would be 46.482 because you multiply 18.3 by 2.54 because for every inch you get 2.54 centimeters
There are some missing data in the text of the problem. I've found them online:
a) coefficient of friction dry steel piston - steel cilinder: 0.3
b) coefficient of friction with oil in between the surfaces: 0.03
Solution:
a) The force F applied by the person (300 N) must be at least equal to the frictional force, given by:

where

is the coefficient of friction, while N is the normal force. So we have:

since we know that F=300 N and

, we can find N, the magnitude of the normal force:

b) The problem is identical to that of the first part; however, this time the coefficienct of friction is

due to the presence of the oil. Therefore, we have:
If the velocity of the train is v=s/t, where s is the distance and t is time, then v=400/5=80m/s. To get the vertical component of the velocity we need to multiply the velocity v with a sin(α): Vv=v*sin(α), where Vv is the vertical component of the velocity and α is the angle with the horizontal. So:
Vv=80*sin(10)=80*0.1736=13.888 m/s.
So the vertical component of the velocity of the train is Vv=13.888 m/s.