Answer:
Heat required = 13,325 calories or 55.75 KJ.
Explanation:
To convert a water to steam at 100 degree celsius to vapor, we have to give latent heat of vaporization to water
Which equals ,
Q = mL,
Where, m is the mass of water present
L = specific latent heat of vaporization
Here , m= 25 gram
L equals to 533 calories (or 2230 Joules)
So, Q = 25×533 = 13,325 Calories
Or , Q = 55,750 Joules = 55.75 KJ
so, Heat required = 13,325 calories or 55.75 KJ.
Answer:
Explanation:
First, we find in the tables the ΔH of formation of each compound. As you can see in the (image 1)
Then we solve the ecuation for ΔH°reaction
ΔH°reaction=∑ΔH°f(products)−∑ΔH°f(Reactants)
ΔH°reaction= (-2* 393.5 - 2*285.8) - (52.4 + 0) kJ/mol
ΔH°reaction = -1.41 *10^3 kJ/mol
Answer:
<h3>The answer is 30 cm³</h3>
Explanation:
The volume of a substance when given the density and mass can be found by using the formula
From the question
mass = 180 g
density = 6 g/cm³
We have
We have the final answer as
<h3>30 cm³</h3>
Hope this helps you
Part of the answer you are looking for may be- Molecules overcome attractions easily and at high temperatures, move faster- (paraphrased from Google) Since the question asked was not provided with the statements as proposed in the original question, I cannot give you an exact answer. I did what i could do, hope this helps!