The domain for f(t) is all of the numbers t for which f(t) is defined.
In other words, its all of the numbers that t minutes can be and still make sense in the function.
f(t) is distance from sea level as a function of time. It does not make sense to have negative time, so t must be 0 or a positive number. t does not necessarily have to be an integer (a whole number), since you can have time values like half a minute.
Answer is <span>C. the set of all real numbers greater than or equal to zero</span>
Answer:
y= -90x+250
Step-by-step explanation:
From the information given, the equation would be that the amount in the account would be equal to -90 that is the amount you withdraw from the account each week multiply for x that is the number of weeks plus $250 that is your initial balance:
y= -90x+250, where
y= amount in the account
x= number of weeks.
Answer:
The first one, As time increases, the number of Perennials sold has decreased
Step-by-step explanation:
Answer:
Step-by-step explanation:
She gave out three dozen and she had six dozen so she has three dozen left three dozen 3 * 12 she has 36 cookies
Question :-
- Find the Area of Rectangle , where the Lenght is 15 cm and its Breadth is 7 cm .
Answer :-
- Area of Rectangle is 105 cm² .

Diagram :-


Solution :-
» As per the provided information in the given question, we have been given that the Length of Rectangle is 15 cm . It's Breadth is given as 7 cm . And, we have been asked to calculate the Area of Rectangle.
For calculating the Area of Rectangle , we will use the Formula :-
Therefore , by Substituting the given values in the above Formula :-



Hence :-
- Area of Rectangle = 105 cm² .

Additional Information :-
![\begin{gathered}\begin{gathered}\boxed{\begin{array}{c} \\ \underline{ { \textbf {\textsf \red{ \dag \: \: More \: Formulas \: \: \dag}}}} \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _{Square} = Side \times Side} \\ \\ \\ \footnotesize\bigstar \: \bf{Area \: _{Rectangle} = Lenght \times Breadth} \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _{Triangle} = \frac{1}{2} \times Base \times Height } \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _{Parallelogram} = Base \times Height} \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _{Trapezium} = \frac{1}{2} \times [ \: A + B \: ] \times Height } \\ \\ \\ \footnotesize \bigstar \: \bf {Area \: _{Rhombus} = \frac{1}{2} \times Diagonal \: 1 \times Diagonal \: 2}\end{array}}\end{gathered}\end{gathered}](https://tex.z-dn.net/?f=%20%5Cbegin%7Bgathered%7D%5Cbegin%7Bgathered%7D%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%20%5C%5C%20%5Cunderline%7B%20%7B%20%5Ctextbf%20%7B%5Ctextsf%20%5Cred%7B%20%5Cdag%20%5C%3A%20%20%5C%3A%20More%20%5C%3A%20Formulas%20%5C%3A%20%20%5C%3A%20%20%5Cdag%7D%7D%7D%7D%20%5C%5C%20%20%5C%5C%20%20%5C%5C%20%20%5Cfootnotesize%20%5Cbigstar%20%20%5C%3A%20%20%5Cbf%7BArea%20%5C%3A%20_%7BSquare%7D%20%3D%20Side%20%5Ctimes%20Side%7D%20%20%5C%5C%20%20%5C%5C%20%20%5C%5C%20%20%20%5Cfootnotesize%5Cbigstar%20%20%5C%3A%20%20%5Cbf%7BArea%20%5C%3A%20_%7BRectangle%7D%20%3D%20Lenght%20%5Ctimes%20Breadth%7D%20%5C%5C%20%20%5C%5C%20%20%5C%5C%20%20%5Cfootnotesize%20%5Cbigstar%20%5C%3A%20%20%5Cbf%7BArea%20%5C%3A%20_%7BTriangle%7D%20%3D%20%20%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%20Base%20%5Ctimes%20Height%20%7D%20%5C%5C%20%20%5C%5C%20%20%5C%5C%20%20%5Cfootnotesize%20%5Cbigstar%20%5C%3A%20%20%5Cbf%7BArea%20%5C%3A%20_%7BParallelogram%7D%20%3D%20Base%20%5Ctimes%20Height%7D%20%5C%5C%20%20%5C%5C%20%20%5C%5C%20%20%5Cfootnotesize%20%5Cbigstar%20%5C%3A%20%20%5Cbf%7BArea%20%5C%3A%20_%7BTrapezium%7D%20%3D%20%20%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%20%5B%20%5C%3A%20A%20%2B%20B%20%5C%3A%20%5D%20%5Ctimes%20Height%20%7D%20%5C%5C%20%5C%5C%20%5C%5C%20%5Cfootnotesize%20%5Cbigstar%20%5C%3A%20%5Cbf%20%7BArea%20%5C%3A%20_%7BRhombus%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%20Diagonal%20%5C%3A%201%20%5Ctimes%20Diagonal%20%5C%3A%202%7D%5Cend%7Barray%7D%7D%5Cend%7Bgathered%7D%5Cend%7Bgathered%7D%20)