Sin³ x-sin x=cos ² x
we know that:
sin²x + cos²x=1 ⇒cos²x=1-sin²x
Therefore:
sin³x-sin x=1-sin²x
sin³x+sin²x-sin x-1=0
sin³x=z
z³+z²-z-1=0
we divide by Ruffini method:
1 1 -1 -1
1 1 2 1 z=1
-------------------------------------
1 2 1 0
-1 -1 -1 z=-1
--------------------------------------
1 1 0 z=-1
Therefore; the solutions are z=-1 and z=1
The solutions are:
if z=-1, then
sin x=-1 ⇒x= arcsin -1=π+2kπ (180º+360ºK) K∈Z
if z=1, then
sin x=1 ⇒ x=arcsin 1=π/2 + 2kπ (90º+360ºK) k∈Z
π/2 + 2kπ U π+2Kπ=π/2+kπ k∈Z ≈(90º+180ºK)
Answer: π/2 + Kπ or 90º+180ºK K∈Z
Z=...-3,-2,-1,0,1,2,3,4....
X^+5x would be the answer
3(3x-1)^2=21
(3x-1)^2 = 7
3x-1 = square root of 7
3x = square root of 7 - 1
x = (square root of 7 - 1)/3
Answer:
15
Step-by-step explanation:
1/3*3=1*5=5
so
3*5=15
Answer:
0
Step-by-step explanation:
8+56/-7x-4
8+(-8)x-4
0x-4
0
Hope this helps ;) ❤❤❤