Answer:


Explanation:
We have to start with the calculation of the <u>concentration</u> of the acid, using the <u>molar mass</u>:
Molas mass of
= 180.16 g/mol


The, with the <u>ionization equation</u> for aspirin, using the ICE table, we can calculate the <u>Ka expression</u>.
HA <=> A^- + H^+
I 0.019 Zero Zero
C -X +X +X
E 0.019-X X X
![Ka=\frac{[X][X]}{[0.019-X]}=\frac{[X]^2}{[0.019-X]}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BX%5D%5BX%5D%7D%7B%5B0.019-X%5D%7D%3D%5Cfrac%7B%5BX%5D%5E2%7D%7B%5B0.019-X%5D%7D)
Now, we can calculate X using the pH value:
![pH=-Log[H^+]](https://tex.z-dn.net/?f=pH%3D-Log%5BH%5E%2B%5D)
![[H^+]=10^-^p^H](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D10%5E-%5Ep%5EH)
![[H^+]=10^-^2^.^6^2=0.00240](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D10%5E-%5E2%5E.%5E6%5E2%3D0.00240)
With this value we can calculate the <u>Ka</u>, so:
.
For the ethylamine we have to follow the same procedure:
B^- + H2O <=> BH + OH^-
I 0.1 / Zero Zero
C -X / +X +X
E 0.1-X / X X
![Kb=\frac{[X][X]}{[0.1-X]}=\frac{[X]^2}{[0.1-X]}](https://tex.z-dn.net/?f=Kb%3D%5Cfrac%7B%5BX%5D%5BX%5D%7D%7B%5B0.1-X%5D%7D%3D%5Cfrac%7B%5BX%5D%5E2%7D%7B%5B0.1-X%5D%7D)
Now, we can calculate X using the <u>pH value</u>:


![pOH=-Log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-Log%5BOH%5E-%5D)
![[OH^-]=10^-^p^O^H](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E-%5Ep%5EO%5EH)
![[OH^-]=10^-^2^.^1^3=0.00741](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E-%5E2%5E.%5E1%5E3%3D0.00741)
With this value we can calculate the <u>Kb</u>, so:
![Kb=\frac{[0.00741]^2}{[0.1-0.00741]}=0.000593](https://tex.z-dn.net/?f=Kb%3D%5Cfrac%7B%5B0.00741%5D%5E2%7D%7B%5B0.1-0.00741%5D%7D%3D0.000593)