Salt is soluble in water.
Work Done = force x displacement. So in this case the 15N is the force (because weight is a force) and 0.60m is the displacement. Therefore 15 x 0.6 = 9 Joules of work done (btw, work done can also be referred to as energy transferred)
Answer: 17.78g
Explanation:
Assume there is no heat exchange with the environment, then the amount of heat taken by the steel rod, Q(s), is equal to the amount of heat lost by the water, Q(w), but with opposite sign.
Q(s) = -Q(w)
Remember, Q = mc(ΔΦ)
Where Q = amount of heat
m = mass of steel
c = specific heat capacity of steel
ΔΦ = Initial temperature T1 - Final temperature T2
Q = mc(T1-T2)
Recall, Q(s) = -Q(w). Then,
m(s)*c(s)*(T1s - T2s) = - m(w)*c(w)*(T1w - T2w)
Substituting each values
Note: m(w) = volume of water*density = 75mL*1g/mL = 75g
m(s)*0.452*(21.5-2) = -75*4.18*(21.5-22)
m(s)*8.814 = 156.75
m(s) = 156.75/8.814
m(s) = 17.78g
Therefore, the mass of steel is 17.78g
Na2CO3 + 2Cl- ⇒ 2NaCl + CO3^-2
<span>
1 mole of Na2CO3 = 106 g </span>
<span>2 moles of NaCl = 2 x 58.4
= 116.8 g
</span>Na2CO3 would increase by 116.8 / 106 = 1.10 to form 2NaCl.
<span>0.4862 g x 1.10 = 0.515 grams of NaCl.
</span>
K2CO3 + 2Cl- ⇒ 2KCl + CO3^-2
<span>1 mole of K2CO3 = 138.2 g </span>
<span>2 moles of KCl = 149.1 </span>
<span>
K2CO3 would increase by </span>149.1 /138.2 = 1.079 <span>to form 2KCl
</span>
<span> 0.4862 x 1.079 = 0.5246 g</span>
What part of chemistry is this