Sodium(Na) is the limiting reagent.
<h3>What is Limiting reagent?</h3>
The reactant that is totally consumed during a reaction, or the limiting reagent, decides when the process comes to an end. The precise quantity of reactant required to react with another element may be estimated from the reaction stoichiometry.
How do you identify a limiting reagent?
The limiting reactant is the one that is consumed first and sets a limit on the quantity of product(s) that can be produced. Calculate how many moles of each reactant are present and contrast this ratio with the mole ratio of the reactants in the balanced chemical equation to get the limiting reactant.
Start by writing the balanced chemical equation that describes this reaction

Notice that the reaction consumes 2 moles of sodium metal for every 1 mole of chlorine gas that takes part in the reaction and produces 2 moles of sodium chloride.
now we can see that we have 3 moles of sodium and 3 moles of chlorine, according to question. so, we can say that sodium is the limiting reagent in the given situation.
to learn more about Limiting Reagent go to - brainly.com/question/14222359
#SPJ4
In an exothermic reaction, heat is produced along with products. But in endothermic reaction, heat is absorbed. If the number of products is less than the sum of the enthalpies of the reactants, the reaction will be exothermic. If the number of products is more than the sum of the enthalpies of the reactants, the reaction is endothermic.
Answer: polar solvent
Explanation:
Polarity can be said to mean, charge separation. Thus, polar solvents are solvents that have charge separation and the ability to solvate i.e dissolve ions.
A polar solvent molecule has slight electrical charge as a result of its shape. A typical and most common example is water, with an oxygen and two hydrogen atoms. The two hydrogen atoms are at an angle to the single oxygen atom. Water is the classic polar solvent. The oxygen atom tends to polarize electron density to itself.
The question is missing the graphics required to answer which I have attached as an image.
There are four different representations of the orientation of water molecules around chloride anion. Let's first analyze the water molecule.
We have H-O-H as the structure of water. The oxygen atom is more electronegative than the hydrogen atoms, which results in a partial positive charge on the hydrogen atoms and a partial negative charge on the oxygen atom.
The chloride anion is a negative charge. Therefore, the water molecules should orient themselves with the hydrogen atoms facing the chlorine atom as the partial positive charge on the hydrogen atoms will be attracted to the negative charge of the chlorine atom.
The correct representation is shown in graph 3 which shows all hydrogen atoms facing the chlorine anion.
Wait, do you mind clarifying what you would like answered for the question?