B) chemical bond i believe is the correct answer
Answer: The pH of an aqueous solution of .25M acetic acid is 2.7
Explanation:

cM 0 0
So dissociation constant will be:

Give c= 0.25 M and
= ?

Putting in the values we get:


![[H^+]=c\times \alpha](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dc%5Ctimes%20%5Calpha)
![[H^+]=0.25\times 0.0084=0.0021](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.25%5Ctimes%200.0084%3D0.0021)
Also ![pH=-log[H^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D)
![pH=-log[0.0021]=2.7](https://tex.z-dn.net/?f=pH%3D-log%5B0.0021%5D%3D2.7)
Thus pH is 2.7
Answer:4.42 g= 1 mol/55.845 =.079 moles of Fe
Explanation:Given 4.42 grams of Fe. The atomic weight of Fe(iron) found on the periodic table is 55.845. Divide grams by the atomic weight to convert to moles.
Answer: assume pathogens are present and treat the samples accordingly
Explanation:
When investigators are unable to conclusively ascertain the source of a biological sample found at a crime scene, the correct thing to do is to treat it as if pathogens are present in it and handle it according to set rules on how to handle pathogens.
This is done to ensure that if a pathogen is indeed present, it would not cause a health emergency by infecting those who come in contact with the samples at the scene.
Answer:
Concentration AgBr at saturation = 7.07 x 10⁻⁷M
Explanation:
Given AgBr(s) => Ag⁺(aq) + Br⁻(aq) ; Ksp = 5 x 10⁻¹³ = [Ag⁺][Br⁻]
I --- 0 0
C --- +x +x
E --- x x
[Ag⁺][Br⁻] = (x)(x) = x² = 5 x 10⁻¹³ => x = SqrRt(5 x 10⁻¹³) = 7.07 x 10⁻⁷M