Answer:
Explanation:
There are three types of interactions involved between the particles when solution are formed.
1 : Solute - solute interaction:
2 : Solute - solvent interaction:
3 : Solvent - solvent interaction:
1 : Solute - solute interaction:
It is the inter-molecular attraction between the solute particles.
2 : Solute - solvent interaction:
It involve the inter-molecular attraction between solvent and solute particles.
3 : Solvent - solvent interaction:
It involve the intermolecular attraction between solvent particles.
Solutions are formed if the intermolecular attraction between solute particles are similar to the attraction between solvent particles.
Exothermic process:
The process will exothermic when solute solvent bonds are formed with the release of energy and energy required to brake the solute-solute particles and solvent solvent particles are less.
Endothermic process:
The process will be endothermic when energy required to break the solute-solute particles and solvent solvent particles are higher than energy released when solute solvent bonds are formed .
Answer:
There is 2.52 kJ of energy released (option 4)
Explanation:
Step 1: Data given
The enthalpy of fusion of methanol (CH3OH) is 3.16 kJ/mol
Mass of methanol = 25.6 grams
Molar mass of methanol = 32.04 g/mol
Step 2: Calculate moles of methanol
Moles methanol = mass methanol / molar mass methanol
Moles methanol = 25.6 grams / 32.04 g/mol
Moles methanol = 0.799 moles
Step 3: Calculate energy transfer
Energy transfer = moles * enthalpy of fusion
Energy = 0.799 moles * 3.16 kJ/mol
Energy = 2.52 kJ released
There is 2.52 kJ of energy released
Answer:
the Rhyniognatha hirsti
Explanation:
at age 400 million years old
Answer:
8.33mol/L
Explanation:
First, let us calculate the molar mass of of formaldehyde (CH2O). This is illustrated below:
Molar Mass of CH2O = 12 + (2x1) + 16 = 12 + 2 + 16 = 30g/mol
Mass of CH2O from the question = 0.25g
Number of mole CH2O =?
Number of mole = Mass /Molar Mass
Number of mole of CH2O = 0.25/30 = 8.33x10^-3mole
Now we can calculate the molarity of formaldehyde (CH2O) as follow:
Number of mole of CH2O = 8.33x10^-3mole
Volume = 1mL
Converting 1mL to L, we have:
1000mL = 1L
Therefore 1mL = 1/1000 = 1x10^-3L
Molarity =?
Molarity = mole /Volume
Molarity = 8.33x10^-3mole/1x10^-3L
Molarity = 8.33mol/L
Therefore, the molarity of formaldehyde (CH2O) is 8.33mol/L
Answer:
The final solution is 1.5 times more acidic than the initial solution
Explanation: