Answer:
a) The theoretical yield is 408.45g of 
b) Percent yield = 
Explanation:
1. First determine the numer of moles of
and
.
Molarity is expressed as:
M=
- For the 
M=
Therefore there are 1.75 moles of 
- For the 
M=
}{1Lsolution}[/tex]
Therefore there are 2.0 moles of 
2. Write the balanced chemical equation for the synthesis of the barium white pigment,
:

3. Determine the limiting reagent.
To determine the limiting reagent divide the number of moles by the stoichiometric coefficient of each compound:
- For the
:

- For the
:

As the
is the smalles quantity, this is the limiting reagent.
4. Calculate the mass in grams of the barium white pigment produced from the limiting reagent.

5. The percent yield for your synthesis of the barium white pigment will be calculated using the following equation:
Percent yield = 
Percent yield = 
The real yield is the quantity of barium white pigment you obtained in the laboratory.
They're metals and they are in the same group/family
The difference in an area with high concentration and an area with low concentration is called the concentration gradient.
<h3>
What is Concentration Gradient ?</h3>
A concentration gradient occurs when the concentration of particles is higher in one area than another.
In passive transport, particles will diffuse down a concentration gradient, from areas of higher concentration to areas of lower concentration, until they are evenly spaced.
This difference in an area with high concentration and an area with low concentration is called the concentration gradient.
Learn more about diffusion here ;
brainly.com/question/24746577
#SPJ1
Answer:
2) 0.4 mol
Explanation:
Step 1: Given data
- Volume of the solution (V): 500 mL
- Molar concentration of the solution (M): 0.8 M = 0.8 mol/L
Step 2: Convert "V" to L
We will use the conversion factor 1 L = 1000 mL.
500 mL × 1 L/1000 mL = 0.500 L
Step 3: Calculate the moles of KBr (solute)
The molarity is the quotient between the moles of solute (n) and the liters of solution.
M = n/V
n = M × V
n = 0.8 mol/L × 0.500 L = 0.4 mol