In metaphase I of meiosis I, the pairs of homologous chromosomes, also known as bivalents or tetrads, line up in a random order along the metaphase plate. The random orientation is another way for cells to introduce genetic variation.
Nucleic acids, proteins, carbohydrates, and lipids are the four major types of biomolecules that form all living things. These biomolecules consists of monomers linked together by covalent bonds to form polymers.
- Nucleic acids, proteins, carbohydrates and lipids can be classified according to their basic elements, monomer constituents, and functions.
Basic elements:
- Nucleic acids: Hydrogen (H); Carbon (C); Oxygen (O); Nitrogen (N); Phosphorous (P)
- Proteins: Hydrogen (H); Carbon (C); Oxygen (O); Nitrogen (N); Sulfur (Z)
- Carbohydrates: Hydrogen (H); Carbon (C); Oxygen (O)
- Lipids: Hydrogen (H); Carbon (C); Oxygen (O); Phosphorous (P)
Monomer constituents:
- Nucleic acids: nucleotides
- Proteins: amino acids
- Carbohydrates: monosaccharides
- Lipids: fatty acids and glycerol
Functions:
- Nucleic acids: contains the hereditary information to synthesize proteins
- Proteins: regulate metabolic processes (enzymes), the main biomolecule of cellular structures
- Carbohydrates: store energy (short term); form cellular structures
- Lipids: store energy (long term); the main component of biological membranes
Examples:
- Nucleic acids: DNA and RNA
- Proteins: lactase; collagen
- Carbohydrates: starch (polysaccharide); glucose (monosacharide)
- Lipids: phospholipids; cholesterol
Learn more in:
brainly.com/question/736132?referrer=searchResults
Answer:
Active transport
Explanation:
Diffusion is when particles (like perfume) spread out everywhere from an area where there is a lot of it to where there is a little to none of it. Active transport is the opposite. A cell for example would use it's own energy to absorb nutrients when it already has quite a lot. Naturally diffusion would make the particles or nutrients go out of the cell because there is a lot of it inside the cell not outside, so active transport is used to absorb as much as the cell can from around it, even when it is full.
The only mutations<span> that matter to large-scale evolution are those that can be </span>passed on<span> to </span>offspring<span>. These occur in reproductive cells like eggs and sperm and are called germ line </span>mutations<span>. A single germ line </span>mutation<span> can have a range of effects: No change occurs in phenotype.</span>
The salmon will not starve as its prey increased.
The smelt is not the predator of the alewife.
The answer is D.