Answer:
8.625 grams of a 150 g sample of Thorium-234 would be left after 120.5 days
Explanation:
The nuclear half life represents the time taken for the initial amount of sample to reduce into half of its mass.
We have given that the half life of thorium-234 is 24.1 days. Then it takes 24.1 days for a Thorium-234 sample to reduced to half of its initial amount.
Initial amount of Thorium-234 available as per the question is 150 grams
So now we start with 150 grams of Thorium-234





So after 120.5 days the amount of sample that remains is 8.625g
In simpler way , we can use the below formula to find the sample left

Where
is the initial sample amount
n = the number of half-lives that pass in a given period of time.
Solid - made up of tightly packed particles, which gives it a solid shape.
Gas - made up of very loose particles, giving it more freedom to roam around as a gas
Liquid - fills into whatever it gets put in, basically takes the shape of the object its in
Answer:
If one astronaut used more force, then that one would be faster than the other. The independent variable is force. The dependent variable is speed.
Explanation:
Force is what is to be changed. Speed is what is being measured.
IV = Changed/factor DV=Measured/Changes by factor
Answer:
The periodic table is composed of seven horizontal rows or periods and is numbered between 1 and 7. There is a regular gradation in the properties of elements in the horizontal rows(periods) from left to right. The periodic table is composed of eight vertical columns or groups. They are numbered between 1 to 8.
Explanation:
Since the given solubility is 350 ppm, convert it first with fraction of solubility. by dividing the solubility with 10^6
S = 350 / 10^6
s = 3.5 x 10^-4
the multiply it to the total solution to calculate the amount of substance present
m = ( 3.5 x 10^-4 ) ( 1.01 )
m = 3.535 x 10^-4 g of the substance present