1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ivenika [448]
3 years ago
11

How to calculate displacement?​

Physics
1 answer:
Blizzard [7]3 years ago
4 0

-- Take a straight ruler.

-- Lay it down with the 'zero' mark at the start point.

-- Rotate it around the start point until the end point is also touching the edge of the ruler.

-- From the marks on the ruler, read the straight-line distance from the start point to the end point.

-- Without moving the ruler, observe and write down the DIRECTION from the start point to the end point.

-- The Displacement is the straight-line distance and direction from the start point to the end point.

You might be interested in
A 0.1 kg toy contains a compressed spring. when the spring is released the toy fly 0.45 m upwards from ground level before falli
trapecia [35]

The speed of the toy when it hits the ground is 2.97 m/s.

The given parameters;

  • mass of the toy, m = 0.1 kg
  • the maximum height reached by the, h = 0.45 m

The speed of the toy before it hits the ground will be maximum. Apply the principle of conservation of mechanical energy to determine the maximum speed of the toy.

P.E = K.E

mgh_{max} = \frac{1}{2} mv_{max}^2\\\\gh_{max} = \frac{1}{2} v_{max}^2\\\\v_{max}^2= 2gh_{max}\\\\v_{max} = \sqrt{2gh_{max}}

Substitute the given values and solve the speed;

v_{max} = \sqrt{2\times 9.8 \times 0.45} \\\\v_{max} = 2.97 \ m/s

Thus, the speed of the toy when it hits the ground is 2.97 m/s.

Learn more here: brainly.com/question/7562874

7 0
2 years ago
Movies and TV shows sometimes portray a person being thrown backwards a sizable distance as a result of being struck by a bullet
MAXImum [283]

Answer:

 R = 4.24 x 10⁻⁴ m

Explanation:

given,

mass of the person = 60.3-kg

mass of the bullet = 10 gram = 0.01 Kg

velocity of bullet = 389 m/s

angle made with the horizontal = 45°

using conservation of momentum.

M v  + m u  = ( M + m ) V

60.3 x 0 + 0.01 x 389 = (60.3 + 0.01) V

V = \dfrac{3.89}{60.31}

V = \dfrac{3.89}{60.31}

V = 0.0645 m/s

for calculation of range

R = \dfrac{V^2sin 2 \theta}{g}

R = \dfrac{0.0645^2sin 2 (45^0)}{9.8}

     R = 4.24 x 10⁻⁴ m

the distance actor fall is  R = 4.24 x 10⁻⁴ m

6 0
3 years ago
A particle with charge 6 mC moving in a region where only electric forces act on it has a kinetic energy of 1.9000000000000001 J
Vesna [10]

Answer:

16.9000000000000001 J

Explanation:

From the given information:

Let the initial kinetic energy from point A be K_A = 1.9000000000000001 J

and the final kinetic energy from point B be K_B = ???

The charge particle Q = 6 mC = 6 × 10⁻³ C

The change in the electric potential from point B to A;

i.e. V_B - V_A = -2.5 × 10³ V

According to the work-energy theorem:

-Q × ΔV = ΔK

-Q \times ( V_B - V_A) = (K_B - K_A)

-(6\times 10^{-3}\ C) \times ( -2.5 \times 10^3) = (K_B - 1.9000000000000001 \ J)

15 = (K_B - 1.9000000000000001 \ J)

K_B = 15+ 1.9000000000000001 \ J

\mathbf{K_B =1 6.9000000000000001 \ J}

3 0
3 years ago
Illustrates an Atwood's machine. Let the masses of blocks A and B be 7.00 kg and 3.00 kg , respectively, the moment of inertia o
Harman [31]

Answer:  

A) 1.55  

B) 1.55

C) 12.92

D) 34.08

E)  57.82

Explanation:  

The free body diagram attached, R is the radius of the wheel  

Block B is lighter than block A so block A will move upward while A downward with the same acceleration. Since no snipping will occur, the wheel rotates in clockwise direction.  

At the centre of the whee, torque due to B is given by  

{\tau _2} = - {T_{\rm{B}}}R  

Similarly, torque due to A is given by  

{\tau _1} = {T_{\rm{A}}}R  

The sum of torque at the pivot is given by  

\tau = {\tau _1} + {\tau _2}  

Replacing {\tau _1} and {\tau _2} by {T_{\rm{A}}}R and - {T_{\rm{B}}}R respectively yields  

\begin{array}{c}\\\tau = {T_{\rm{A}}}R - {T_{\rm{B}}}R\\\\ = \left( {{T_{\rm{A}}} - {T_{\rm{B}}}} \right)R\\\end{array}  

Substituting I\alpha for \tau in the equation \tau = \left( {{T_{\rm{A}}} - {T_{\rm{B}}}} \right)R  

I\alpha=\left( {{T_{\rm{A}}} - {T_{\rm{B}}}} \right)R  

\frac{I\alpha}{R} =\left {{T_{\rm{A}}} - {T_{\rm{B}}}} \right  

The angular acceleration of the wheel is given by \alpha = \frac{a}{R}  

where a is the linear acceleration  

Substituting \frac{a}{R} for \alpha into equation  

\frac{I\alpha}{R} =\left {{T_{\rm{A}}} - {T_{\rm{B}}}} \right we obtain  

\frac{Ia}{R^2} =\left {{T_{\rm{A}}} - {T_{\rm{B}}}} \right  

Net force on block A is  

{F_{\rm{A}}} = {m_{\rm{A}}}g - {T_{\rm{A}}}  

Net force on block B is  

{F_{\rm{B}}} = {T_{\rm{B}}} - {m_{\rm{B}}}g  

Where g is acceleration due to gravity  

Substituting {m_{\rm{B}}}a and {m_{\rm{A}}}a for {F_{\rm{B}}} and {F_{\rm{A}}} respectively into equation \frac{Ia}{R^2} =\left {{T_{\rm{A}}} - {T_{\rm{B}}}} \right and making a the subject we obtain  

\begin{array}{c}\\{m_{\rm{A}}}g - {m_{\rm{A}}}a - \left( {{m_{\rm{B}}}g + {m_{\rm{B}}}a} \right) = \frac{{Ia}}{{{R^2}}}\\\\\left( {{m_{\rm{A}}} - {m_{\rm{B}}}} \right)g - \left( {{m_{\rm{A}}} + {m_{\rm{B}}}} \right)a = \frac{{Ia}}{{{R^2}}}\\\\\left( {{m_{\rm{A}}} + {m_{\rm{B}}} + \frac{I}{{{R^2}}}} \right)a = \left( {{m_{\rm{A}}} - {m_{\rm{B}}}} \right)g\\\\a = \frac{{\left( {{m_{\rm{A}}} - {m_{\rm{B}}}} \right)g}}{{\left( {{m_{\rm{A}}} + {m_{\rm{B}}} + \frac{I}{{{R^2}}}} \right)}}\\\end{array}  

Since {m_{\rm{B}}} = 3kg and {m_{\rm{B}}} = 7kg  

g=9.81 and R=0.12m, I=0.22{\rm{ kg}} \cdot {{\rm{m}}^2}  

Substituting these we obtain  

a = \frac{{\left( {{m_{\rm{A}}} - {m_{\rm{B}}}} \right)g}}{{\left( {{m_{\rm{A}}} + {m_{\rm{B}}} + \frac{I}{{{R^2}}}} \right)}}  

\begin{array}{c}\\a = \frac{{\left( {7{\rm{ kg}} - 3{\rm{ kg}}} \right)\left( {9.81{\rm{ m/}}{{\rm{s}}^2}} \right)}}{{\left( {7{\rm{ kg}} + 3{\rm{ kg}} + \frac{{0.22{\rm{ kg/}}{{\rm{m}}^2}}}{{{{\left( {0.120{\rm{ m}}} \right)}^2}}}} \right)}}\\\\ = 1.55235{\rm{ m/}}{{\rm{s}}^2}\\\end{array}

Therefore, the linear acceleration of block A is 1.55 {\rm{ m/}}{{\rm{s}}^2}

(B)

For block B

{a_{\rm{B}}} = {a_{\rm{A}}}

Therefore, the acceleration of both blocks A and B are same

1.55 {\rm{ m/}}{{\rm{s}}^2}

(C)

The angular acceleration is \alpha = \frac{a}{R}

\begin{array}{c}\\\alpha = \frac{{1.55{\rm{ m/}}{{\rm{s}}^2}}}{{0.120{\rm{ m}}}}\\\\ = 12.92{\rm{ rad/}}{{\rm{s}}^2}\\\end{array}

(D)

Tension on left side of cord is calculated using

\begin{array}{c}\\{T_{\rm{B}}} = {m_{\rm{B}}}g + {m_{\rm{B}}}a\\\\ = {m_{\rm{B}}}\left( {g + a} \right)\\\end{array}

\begin{array}{c}\\{T_{\rm{B}}} = \left( {3{\rm{ kg}}} \right)\left( {9.81{\rm{ m/}}{{\rm{s}}^2} + 1.55{\rm{ m/}}{{\rm{s}}^2}} \right)\\\\ = 34.08{\rm{ N}}\\\end{array}

(E)

Tension on right side of cord is calculated using

\begin{array}{c}\\{T_{\rm{A}}} = {m_{\rm{A}}}g - {m_{\rm{A}}}a\\\\ = {m_{\rm{A}}}\left( {g - a} \right)\\\end{array}

\begin{array}{c}\\{T_{\rm{A}}} = \left( {7{\rm{ kg}}} \right)\left( {9.81{\rm{ m/}}{{\rm{s}}^2} – 1.55{\rm{ m/}}{{\rm{s}}^2}} \right)\\\\ = 57.82{\rm{ N}}\\\end{array}

6 0
2 years ago
Consider the following examples of homeostatic regulation: In response to an increase in plasma K concentrations, secretion of t
TiliK225 [7]

Answer:

Both are examples of negative feedback regulation.

Explanation:

The maintenance of the homeostasis in the body is controlled by the the feedback regulation of the body. Two main types of feedback regulation are positive regulation and negative regulation.

The negative regulation occurs when the final product of the reactions inhibits the further secretion of that product. In the given examples of aldosterone and calcium mechanism, the secretion of aldosterone and calcium decreases as the normal levels are acheived in the body.

Thus, the answer is both are examples of negative feedback regulation.

5 0
2 years ago
Other questions:
  • Which unit of speed will you use to express the speed of the following. 1. Aeroplane. 2.tortoise. 3.ant 4.horse​
    13·1 answer
  • the mass of a brick is 4 kg, find the mass of water displaced by it when completely immersed in water.​
    6·1 answer
  • NEED ANSWER ASAP
    6·2 answers
  • What's ur father put is ur name​
    11·2 answers
  • What state of matter are the outer planets?
    7·2 answers
  • 10 cm^3 of iron have a smaller
    12·1 answer
  • What was your favorite thing to learn in physics
    8·1 answer
  • Which part of the electromagnetic spectrum has a lower frequency than visible light? x-rays ultraviolet infrared gamma rays
    13·2 answers
  • The rear wheel of a 150 kg tricycle accidentally ran over a nail. The circular tip of the nail has a diameter of 0.001 m. How mu
    6·1 answer
  • Why must the test charge used to determine the electric field be very, very small?.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!