Answer:
D
Explanation:
If it is of very high intensity it will be 85-100%
Given that,
Mass of trackler, m₁ = 100 kg
Speed of trackler, u₁ = 2.6 m/s
Mass of halfback, m₂ = 92 kg
Speed of halfback, u₂ = -5 m/s (direction is opposite)
To find,
Mutual speed immediately after the collision.
Solution,
The momentum of the system remains conserved in this case. Let v is the mutual speed after the collision. Using conservation of momentum as :

So, the mutual speed immediately after the collision is 1.04 m/s but in opposite direction.
Answer:
Explanation:
Apply the law of conservation of energy

![Gm_1m_2[\frac{1}{r_f} -\frac{1}{r_1} ]=\frac{1}{2} (m_1v_1^2+m_2v_2^2)](https://tex.z-dn.net/?f=Gm_1m_2%5B%5Cfrac%7B1%7D%7Br_f%7D%20-%5Cfrac%7B1%7D%7Br_1%7D%20%5D%3D%5Cfrac%7B1%7D%7B2%7D%20%28m_1v_1%5E2%2Bm_2v_2%5E2%29)
from the law of conservation of the linear momentum

Therefore,
![Gm_1m_2[\frac{1}{r_f} -\frac{1}{r_1} ]=\frac{1}{2} (m_1v_1^2+m_2v_2^2)](https://tex.z-dn.net/?f=Gm_1m_2%5B%5Cfrac%7B1%7D%7Br_f%7D%20-%5Cfrac%7B1%7D%7Br_1%7D%20%5D%3D%5Cfrac%7B1%7D%7B2%7D%20%28m_1v_1%5E2%2Bm_2v_2%5E2%29)
![=\frac{1}{2} [m_1v_1^2+m_2[\frac{m_1v_1}{m_2} ]^2]\\\\=\frac{1}{2} [m_1v_1^2+\frac{m_1^2v_1^2}{m_2} ]\\\\=\frac{m_1v_1^2}{2} [\frac{m_1+m_2}{m_2} ]](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B2%7D%20%5Bm_1v_1%5E2%2Bm_2%5B%5Cfrac%7Bm_1v_1%7D%7Bm_2%7D%20%5D%5E2%5D%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7B2%7D%20%5Bm_1v_1%5E2%2B%5Cfrac%7Bm_1%5E2v_1%5E2%7D%7Bm_2%7D%20%5D%5C%5C%5C%5C%3D%5Cfrac%7Bm_1v_1%5E2%7D%7B2%7D%20%5B%5Cfrac%7Bm_1%2Bm_2%7D%7Bm_2%7D%20%5D)
![v_1^2=[\frac{2Gm_2^2}{m_1+m_2} ][\frac{1}{r_f} -\frac{1}{r_1} ]](https://tex.z-dn.net/?f=v_1%5E2%3D%5B%5Cfrac%7B2Gm_2%5E2%7D%7Bm_1%2Bm_2%7D%20%5D%5B%5Cfrac%7B1%7D%7Br_f%7D%20-%5Cfrac%7B1%7D%7Br_1%7D%20%5D)
Substitute the values in the above result
![v_1^2=[\frac{2Gm_2^2}{m_1+m_2} ][\frac{1}{r_f} -\frac{1}{r_1} ]](https://tex.z-dn.net/?f=v_1%5E2%3D%5B%5Cfrac%7B2Gm_2%5E2%7D%7Bm_1%2Bm_2%7D%20%5D%5B%5Cfrac%7B1%7D%7Br_f%7D%20-%5Cfrac%7B1%7D%7Br_1%7D%20%5D)
![=[\frac{2(6.67\times 10^-^1^1)(107)^2}{27+107} ][\frac{1}{26} -\frac{1}{41}] \\\\=1.6038\times 10^-^1^0\\\\v_1=\sqrt{1.6038\times 106-^1^0} \\\\=1.2664 \times 10^-^5m/s](https://tex.z-dn.net/?f=%3D%5B%5Cfrac%7B2%286.67%5Ctimes%2010%5E-%5E1%5E1%29%28107%29%5E2%7D%7B27%2B107%7D%20%5D%5B%5Cfrac%7B1%7D%7B26%7D%20-%5Cfrac%7B1%7D%7B41%7D%5D%20%5C%5C%5C%5C%3D1.6038%5Ctimes%2010%5E-%5E1%5E0%5C%5C%5C%5Cv_1%3D%5Csqrt%7B1.6038%5Ctimes%20106-%5E1%5E0%7D%20%5C%5C%5C%5C%3D1.2664%20%5Ctimes%2010%5E-%5E5m%2Fs)
B) the speed of the sphere with mass 107.0 kg is

\\\\=3.195\times 10^-^6m/s](https://tex.z-dn.net/?f=%3D%5B%5Cfrac%7B27%7D%7B107%7D%20%5D%281.2664%20%5Ctimes%2010%5E-%5E5%29%5C%5C%5C%5C%3D3.195%5Ctimes%2010%5E-%5E6m%2Fs)
C) the magnitude of the relative velocity with which one sphere is

D) the distance of the centre is proportional to the acceleration

Thus,

and

When the sphere make contact with eachother
Therefore,

And

The point of contact of the sphere is

The gravitational force between Mars and the Sun is 
Explanation:
The magnitude of the gravitational force between two objects is given by the equation:
where
is the gravitational constant
m1, m2 are the masses of the two objects
r is the separation between them
In this problem, we have:
is the mass of the Sun
is the mass of Mars
is the average distance Mars-Sun
Substituting into the equation, we find the gravitational force:

So, the closest answer is

Learn more about gravitational force:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly