1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andre45 [30]
3 years ago
13

A cross-country skier slides horizontally along the snow and comes to rest after sliding a distance of 11 m. If the coefficient

of kinetic friction between her skis and the snow is μk = 0.020, determine her speed at the start of the slide.
Physics
2 answers:
Basile [38]3 years ago
6 0

Answer:

v_o = 4.54 m/s  

Explanation:

<u>Knowns  </u>

From equation, the work done on an object by a constant force F is given by:  

W = (F cos Ф)S                                   (1)  

Where S is the displacement and Ф is the angle between the force and the displacement.  

From equation, the kinetic energy of an object of mass m moving with velocity v is given by:  

K.E=1/2m*v^2                                       (2)

From The work- energy theorem , the net work done W on an object equals the difference between the initial and the find kinetic energy of that object:  

W = K.E_f-K.E_o                                 (3)

<u>Given </u>

The displacement that the sled undergoes before coming to rest is s = 11.0 m and the coefficient of the kinetic friction between the sled and the snow is μ_k = 0.020  

<u>Calculations</u>

We know that the kinetic friction force is given by:

f_k=μ_k*N

And we can get the normal force N by applying Newton's second law to the sled along the vertical direction, where there is no acceleration along this direction, so we get:  

∑F_y=N-mg

     N=mg

Thus, the kinetic friction force is:  

f_k = μ_k*N  

Since the friction force is always acting in the opposite direction to the motion, the angle between the force and the displacement is Ф = 180°.  

Now, we substitute f_k and Ф into equation (1), so we get the work done by the friction force:  

W_f=(f_k*cos(180) s

      =-μ_k*mg*s

Since the sled eventually comes to rest, K.E_f= 0 So, from equation (3), the net work done on the sled is:  

W= -K.E_o    

Since the kinetic friction force is the only force acting on the sled, so the net work on the sled is that of the kinetic friction force  

W_f= -K.E_o  

From equation (2), the work done by the friction force in terms of the initial speed is:  

W_f=-1/2m*v^2  

Now, we substitute for W_f= -μ_k*mg*s, and solving for v_o so we get:  

-μ_k*mg*s = -1/2m*v^2  

v_o = √ 2μ_kg*s

Finally, we plug our values for s and μ_k, so we get:  

v_o = √2 x (0.020) x (9.8 m/s^2) x (11.0 m) = 4.54 m/s  

v_o = 4.54 m/s  

lyudmila [28]3 years ago
3 0
<h2>Answer:</h2>

2.10m/s

<h2>Explanation:</h2>

Here, we use the work-energy principle that states that the work done (W) on a body is equal to the change in kinetic energy (ΔK_{E}) of the body. i.e

W = ΔK_{E}        [ΔK_{E} = K_{E}₂ - K_{E}₁]

=> W = K_{E}₂ - K_{E}₁           ----------------(i)

[K_{E}₂ = final kinetic energy K_{E}₁ = initial kinetic energy]

But;

W = F x s cos θ

Where;

F = net force acting on the body

s = displacement of the body due to the force

θ = angle between the force and the displacement.

Also;

K_{E}₂ = \frac{1}{2} x m x v²

K_{E}₁ = \frac{1}{2} x m x u²

Where;

m = mass of the body

v = final velocity of the body

u = initial velocity of the body

Substitute the values of K_{E}₂ , K_{E}₁ and W into equation (i) as follows;

F x s cos θ =  (\frac{1}{2} x m x v²) - (\frac{1}{2} x m x u²)    -----------------(ii)

From the question;

i. The skier comes to a rest, this implies that the final velocity (v) of the body(skier) is 0.

Therefore substitute v = 0 into equation (ii) to get;

F x s cos θ =  (\frac{1}{2} x m x 0²) - (\frac{1}{2} x m x u²)

F x s cos θ =  0 - (\frac{1}{2} x m x u²)

F x s cos θ =   - (\frac{1}{2} x m x u²)             ---------------------(iii)

ii. Since there is no motion in the vertical direction, the net force (F) acting is the kinetic frictional force (F_{R}) in the horizontal direction

i.e F = F_{R}

But we know that the frictional force F_{R}, is given by;

F = F_{R} = μk x N

Where;

μk = coefficient of static friction

N = Normal reaction which is equal to the weight (m x g) of the skier [since there is no motion in the vertical]

=> F =  F_{R}  = μk x m x g          [m = mass of the skier and g = acceleration due to gravity]

iii. Also, since the only force acting is the frictional force acting to oppose motion, the angle θ between the force and the displacement is 180°

iv. Now substitute all of these values into equation (iii) as follows;

F x s cos θ =   - (\frac{1}{2} x m x u²)

μk x m x g x s cos θ = -  (\frac{1}{2} x m x u²)

<em>Divide through by m;</em>

μk x g x s cos θ = -  (\frac{1}{2} x u²)        ----------------(iv)

<em>From the question;</em>

s = 11m

μk = 0.020

Take g = 10m/s²

θ = 180°

<em>Substitute these values into equation (iv) and solve for u;</em>

0.020 x 10 x 11 cos 180 = -  (\frac{1}{2} x u²)

0.020 x 10 x 11 x (-1) = -  (\frac{1}{2} x u²)

-2.2 = -  \frac{1}{2} x u²

u² = 4.4

u = \sqrt{4.4}

u = 2.10m/s

Therefore, the speed of the skier at the start of the slide is 2.10m/s

You might be interested in
How is velocity different from speed? Based on distance and/or direction
Mnenie [13.5K]

Answer:

Speed is solved with time and distance but has no direction

Average velocity is solved with Δx/Δt and has a direction

6 0
2 years ago
From a hot air balloon that is at rest at a certain height, a projectile is launched horizontally at 30m / s, how fast will it h
Yuki888 [10]

Answer:

A. 50 m/s

Explanation:

Given in the y direction:

v₀ = 0 m/s

a = 10 m/s²

t = 4 s

Find: v

v = at + v₀

v = (10 m/s²) (4 s) + 0 m/s

v = 40 m/s

In the x direction, the velocity is constant at 30 m/s.

The overall speed is:

v² = (30 m/s)² + (40 m/s)²

v = 50 m/s

3 0
3 years ago
Read 2 more answers
If a truck has the mass of 2,000 kilometres and a velocity of 35 m/s, what is the momentum
alexira [117]

Answer:

<h2>70,000 kg.m/s</h2>

Explanation:

The momentum of an object can be found by using the formula

momentum = mass × velocity

From the question we have

momentum = 2000 × 35

We have the final answer as

<h3>70,000 kg.m/s</h3>

Hope this helps you

5 0
2 years ago
What provides the power to move the cutting blade on a sawmill?
Lynna [10]
Sawmills rely on electricity to run the cutting blade.
3 0
3 years ago
Read 2 more answers
Jenny wants to determine if a new brand name washing detergent is better than her old detergent. She washes ten dirty t-shirts w
zmey [24]

The independent variable would be the shirts you are using the dependent variable would be the detergent.

Hope this helps!

6 0
3 years ago
Other questions:
  • What causes an object to rotate
    5·1 answer
  • Show that the energy of a magnetic dipole m in a magnetic field B is U--m B
    15·1 answer
  • N what way are all sound waves and light waves similar?
    6·1 answer
  • Can someone please help, ty!
    10·1 answer
  • The law of reflection states that if the angle of incidence is 76 degrees, the angle of reflection is ___ degrees.
    7·1 answer
  • How do microwaves use the behavior and characteristics of the electromagnetic wave to function?
    11·1 answer
  • A boy rolls a toy car across a floor with a velocity of 3.21 m/s. How long does it take the car to travel a distance of 4.50 m?
    12·1 answer
  • What is a living organism? Give a few examples.
    15·1 answer
  • A belt of negligible mass passes between cylinders A and B and is pulled to the right with a force P. Cylinders A and B weigh, r
    15·1 answer
  • 1. What is the acceleration in m/s^2 of a car that slows from 50mi/hr to 25 mi/hr in 5<br> minutes?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!