Answer: The force was 13.92 Newtons.
Explanation:
First, let's recall the second Newton's law:
The net force is equal to the mass times the acceleration, or:
F = m*a
where:
F = force
m = mass
a = acceleration.
When the player hits the ball with the bat, he applies a force that accelerates the ball for a small period of time, that increases greatly the speed of the ball.
In this case, we know that:
the mass of the ball is 0.145 kg
The acceleration of the ball is 96m/s^2
Then we can input those values in the above equation to find the force.
F = 0.145kg*96m/s^2 = 13.92 N
The force was 13.92 Newtons.
Explanation:
It is given that, the metal with the highest melting temperature is tungsten which melts at around 3400 K, T = 3400 K
We need to find the wavelength of the peak of the black body distribution for this temperature. It can be calculated using Wein's displacement law as :

k is the constant,



or

The wavelength of infrared is from 700 nm to 1 mm. So, the lies in infrared region of the spectrum. Hence, this is the required solution.
We need optics to help aid people who have short or long sightedness.
we need optics to be able to watch TV
we need optics to be able to use the internet at high speeds
there are a tonne of reasons why we need optics.
There will be four unpaired electrons
The metal complex is [FeX₆]³⁻
X being the halogen ligand
X = F, CL, Br, and I
The oxidation of metal state is +3
The ground state configuration is
₂₆Fe =Is² 2s²2p⁶ 3s² 3p⁶ 3d⁶ 4s²
Metal, Fe(III) ion electron configures
₂₆Fe³⁺ = Is2 2s² 2p⁶ 3s² 3p⁶ 3d⁵
I think it is D
Hope my answer help you?