Answer:
The correct option is 4.
4) Doing two distance formulas to show that adjacent sides are not the same length.
Step-by-step explanation:
Parallelogram is a quadrilateral which has opposite sides equals and parallel. Example of a parallelogram are rhombus, rectangle, square etc.
We can prove that a quadrilateral MNOP is a parallelogram. If we find the slopes of all four sides and compare those of the opposite ends, same slopes would indicate the opposite sides are parallel, hence the quarilateral is a parallelogram. We can also find the distance of two opposing sides, and slopes of twp opposing sides to determine whether it is a parallelogram or not. The most difficult approach is that diagonals bisect each other at same point.
However, using only two distance formulas will not give us enough information to determine whether a side is parallel or not.
If one is 50 cents, then to get to one dollar we need 2 of those. also, one dollar equals 100 cents, and 50+50=100, so then the answer would be that you need to have 2 coins of the half-dollar to get to 1 dollar. i hope that this helps you, have a great day! =)
The answer for the algebraic expression is 5-6t
Answer:
Let X be the number.
Twice the number would be 2x
The difference between the two, would be subtraction, so you would subtract 4 from 2x
The equation becomes 2x-4 = 16
Now solve for x:
2x-4 = 16
Add 4 to each side:
2x = 20
Divide both sides by 2:
x = 20/2
x = 10
The number is 10.
1. We use the recursive formula to make the table of values:
f(1) = 35
f(2) = f(1) + f(2-1) = f(1) + f(1) = 35 + 35 = 70
f(3) = f(1) + f(3-1) = f(1) + f(2) = 35 + 70 = 105
f(4) = f(1) + f(4-1) = f(1) + f(3) = 35 + 105 = 140
f(5) = f(1) + f(5-1) = f(1) + f(4) = 35 + 140 = 175
2. We observe that the pattern is that for each increase of n by 1, the value of f(n) increases by 35. The explicit equation would be that f(n) = 35n. This fits with the description that Bill saves up $35 each week, thus meaning that he adds $35 to the previous week's value.
3. Therefore, the value of f(40) = 35*40 = 1400. This is easier than having to calculate each value from f(1) up to f(39) individually. The answer of 1400 means that Bill will have saved up $1400 after 40 weeks.
4. For the sequence of 5, 6, 8, 11, 15, 20, 26, 33, 41...
The first-order differences between each pair of terms is: 1, 2, 3, 4, 5, 6, 7, 8...since these differences form a linear equation, this sequence can be expressed as a quadratic equation. Since quadratics are functions (they do not have repeating values of the x-coordinate), therefore, this sequence can also be considered a function.