No, not exactly. They jiggle and tremble and vibrate a lot, but
they always basically stay in very nearly the same place.
It's like if you're allowed to go anywhere you want in your jail cell,
you wouldn't exactly call that "moving about freely".
<span>According to the formula :
</span><span>a=<span><span>ΔV / </span><span>ΔT
</span></span></span><span>When a body is moving with a uniform velocity, the acceleration is zero. That's it. You should remember, that velocity is not constant whereas speed is constant.</span>
There’s 10mm in a cm: 22mm
The best explanation for the difference in time is: A. The difference in weight doesn't affect the time, but they are affected differently by air resistance.
<h3>What is weight?</h3>
Weight can be defined as the force acting on an object or a physical body due to the effect of gravity. Also, the weight of an object (body) is typically measured in Newton.
<h3>The factors that affect weight.</h3>
Some of the factors that affect the weight that is possessed by an object or a physical body include the following:
In conclusion, the weight possessed by the shoe and shirt has no effect on time but would be affected differently by air resistance.
Read more on weight here: brainly.com/question/13833323
Answer:
Twice.
Explanation:
The momentum of an object is given by :
p = mv
Where
m is mass and v is the velocity
If the mass of the ball were doubled, m'=2m and v'=v=3 m/s
New momentum,
p'=m'v'
p'=2m × v
p'=2mv
or
p'=2p
So, the new momentum becomes twice the initial momentum.