Answer:
W = 0.49 N
τ = 0.4851 Nm
Force
Explanation:
The weight force can be found as:
W = mg
W = (0.05 kg)(9.8 m/s²)
<u>W = 0.49 N</u>
The torque about the pivot can be found as:
τ = W*d
where,
τ = torque
d = distance between weight and pivot = 99 cm = 0.99 m
Therefore,
τ = (0.49 N)(0.99 m)
<u>τ = 0.4851 Nm</u>
The pivot exerts a <u>FORCE </u>on the meter stick because the pivot applies force normally over the stick and has a zero distance from stick.
Answer:
B. 17m/s
Explanation:
This question contains a graph that illustrates the relationship between the speed of a car over time. The graph shows that one can make an inference of the amount of time it takes for the car to cover a particular speed and vice versa.
In this case, after 3 seconds, the speed of the car will be 17 m/s. This inference was got by tracing the position of 3s in the x-axis to the value on the y-axis. Doing this, the best inference for the speed of the car after 3 seconds is 17m/s.
Answer:
It changes at a rate of 4/3 meter per second
Explanation:
In the given figure below we have
Solving for Y given
we get

Answer and Explanation:
Data provided in the question
Force = 50N
Length = 5mm
diameter = 2.0m = 
Extended by = 0.25mm = 
Based on the above information, the calculation is as follows
a. The Stress of the wire is

here area of circle = perpendicular to the are i.e cross-sectional i.e
= 
= 
Now place these above values to the above formula

= 15.92 MPa
As 1Pa = 1 by N m^2
So,
MPa = 10^6 N m^2
b. Now the strain of the wire is

= 