<span>vf^2 = vi^2 + 2*a*d
---
vf = velocity final
vi = velocity initial
a = acceleration
d = distance
---
since the airplane is decelerating to zero, vf = 0
---
0 = 55*55 + 2*(-2.5)*d
d = (-55*55)/(2*(-2.5))
d = 605 meters
</span>
a)
Y₀ = initial position of the stone at the time of launch = 0 m
Y = final position of stone = 20.0 meters
a = acceleration = - 9.8 m/s²
v₀ = initial speed of stone at the time of launch = 30.0 m/s
v = final speed = ?
Using the equation
v² = v₀² + 2 a (Y - Y₀)
inserting the values
v² = 30² + 2 (- 9.8) (20 - 0)
v = 22.5 m/s
b)
Y₀ = initial position of the stone at the time of launch = 0 m
Y = maximum height gained
a = acceleration = - 9.8 m/s²
v₀ = initial speed of stone at the time of launch = 30.0 m/s
v = final speed = 0 m/s
Using the equation
v² = v₀² + 2 a (Y - Y₀)
inserting the values
0² = 30² + 2 (- 9.8) (Y - 0)
Y = 46 m
Answer:
ms⁻¹
Explanation:
= diameter of merry-go-round = 4 m
= radius of merry-go-round =
=
= 2 m
= moment of inertia = 500 kgm²
= angular velocity of merry-go-round before ryan jumps = 2.0 rad/s
= angular velocity of merry-go-round after ryan jumps = 0 rad/s
= velocity of ryan before jumping onto the merry-go-round
= mass of ryan = 70 kg
Using conservation of angular momentum



ms⁻¹
Answer:
<em>Height = 5.65 km</em>
Explanation:
is the circumference or we can say measures the boundary of hemisphere of friction-less ice that he is sitting on.
So, the height will be = 2 x 3.14 x (30)^2 = 5654.7 m = 5.65 km
Answer:
Approximately
.
Assumption: the ball dropped with no initial velocity, and that the air resistance on this ball is negligible.
Explanation:
Assume the air resistance on the ball is negligible. Because of gravity, the ball should accelerate downwards at a constant
near the surface of the earth.
For an object that is accelerating constantly,
,
where
is the initial velocity of the object,
is the final velocity of the object.
is its acceleration, and
is its displacement.
In this case,
is the same as the change in the ball's height:
. By assumption, this ball was dropped with no initial velocity. As a result,
. Since the ball is accelerating due to gravity,
.
.
In this case,
would be the velocity of the ball just before it hits the ground. Solve for
.
.