Given that,
Voltage = 10 volt
Suppose, The three resistance is connected in parallel and each resistance is 12 Ω. find the current in the electric circuit.
We need to calculate the equivalent resistance
Using formula of parallel

Put the value into the formula



We need to calculate the current in the circuit
Using ohm's law


Where, V = voltage
R = resistance
Put the value into the formula


Hence, The current in the circuit is 2.5 A
It depends on the size of the star. If it's size was normal then it cools down into White dwarf, then a black dwarf. If a really huge star dies, then we can see a "Supernova" from that.
Hope this helps!!
L = illuminance
A = surface
i = intensity
L = i / A ==: i = L * A
i = 6 lux * 4 m^2 = 24 lumen
<span>Now that you know the time to reach its maximum height, you have enough information to find out the initial velocity of the second arrow. Here's what you know about it: its final velocity is 0 m/s (at the maximum height), its time to reach that is 2.8 seconds, but wait! it was fired 1.05 seconds later, so take off 1.05 seconds so that its time is 1.75 seconds, and of course gravity is still the same at -9.8 m/s^2. Plug those numbers into the kinematic equation (Vf=Vi+a*t, remember?) for 0=Vi+-9.8*1.75 and solve for Vi to get.......
17.15 m/s</span>
The S strain Pneumococcus bacteria had a smooth surface because IT IS SURROUNDED BY A CARBOHYDRATE CAPSULE CALLED THE S STRAIN. The other form, the R strain has a rough surface and no capsule. It is only the S strain that exhibits virulence.