<span>C) Humans and their activities do not affect the natural cycles of the Earth
you can think that </span>Humans and their activities do not affect the natural cycles of the Earth.
Answer:
You input potential (stored) energy into the rubber band system when you stretched the rubber band back. Because it is an elastic system, this kind of potential energy is specifically called elastic potential energy. ... When the rubber band is released, the potential energy is quickly converted to kinetic (motion) energy.
Explanation:
Explanation:
a) The rope obeys Hooke's law, so:
F = k Δx
The elastic energy in the rope is:
EE = ½ k Δx²
Or, in terms of F:
EE = ½ F Δx
Use trigonometry to find the stretched length.
cos 20° = 35 / x
x = 37.25
So the displacement is:
Δx = 37.25 − 24
Δx = 13.25
The elastic energy per rope is:
EE = ½ (3.7×10⁴ N) (13.25 m)
EE = 245,000 J
There's two ropes, so the total energy is:
2EE = 490,000 J
Rounded to one significant figure, the elastic energy is 5×10⁵ J.
b) The elastic energy in the ropes is converted to gravitational energy.
EE = PE = mgh
5×10⁵ J = (1.2×10³ kg) (9.8 m/s²) h
h = 42 m
Rounded to one significant figure, the height is 40 m. So the claim is not justified.
Answer:
c. 40200 J
Explanation:
Assume gravitational constant g = 9.8m/s2. The weight of the 2000kg vehicle is

In addition to the friction averaging at 500N, the total force is
F = 20000 + 500 = 20100 N
The work required to generate this force over a distance of 2m would be
F*s = 20500 * 2 = 40200 J
So c.40200 J is the correct answer
Answer:
107 °F
Explanation:
Given that
The temperature at sea level = 100°F
height ,h= 2000 feet
The average lapse rate = 3.5°F/1000 feet
Given that rise in temperature 3.5°F per 1000 feet.
1000 feet ⇒ 3.5°F
Given that 2000 feet
2000 feet ⇒ 3.5°F x 2 +100°F
2000 feet ⇒ 107 °F
Therefore the temperature will be 107 °F .