We have: K.E. = mv² / 2
Here, m = 1 Kg
v = 4 m/s
Substitute their values in the formula,
K.E. = 1×4² / 2
K.E. = 16/ 2
K.E. = 8 J
Finally, answer of your question would be 8 Joules.
Hope this helps!
Answer:
Explanation:
Given: Density of blood = 1.03 × 10³ Kg/m³, Height = 1.93 m g = 9.8 m/s²
pressure at the brain is equal to atmospheric pressure. = Hydro-static
pressure(ρ₀)
∴ pressure of the foot = pressure of the brain(ρ₀) + ( density of blood × acceleration due to gravity × height)(ρgh)
Hydro-static pressure = pressure at the feet- pressure at the brain(ρ₀)
Hydro-static pressure (Δp) = (ρgh + ρ₀) - ρ₀ = ρgh
Hydro-static pressure = 1.03 × 10³ × 9.8 × 1.93 = 1.948 × 10⁴ Pa
∴ Hydro-static pressure ≈ 1.95 × 10⁴ Pa
Answer:
The change in momentum is 
Explanation:
From the question we are told that
The time taken for the stone to stop is 
The net force on the rock is 
The impulse of the rock can be mathematically represented as

Substituting values


Now impulse is defined as the rate at which momentum change
Hence the change in momentum
of the rock is equal to the impulse of the rock
So

A male having the disease.
It is through biopsychological feedback.
A class of chemical called a neurotransmitter is important in the transmission of nerve impulses. Neurotransmitters are packaged by the cell into small, membrane-bound sacs called vesicles. Upon receiving a chemical signal, the vesicles move toward the cell membrane and fuse with it, releasing the enclosed neurotransmitters from the terminal end of the nerve cell.