1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PolarNik [594]
2 years ago
6

Use the work—energy theorem to solve each of these problems. You can use Newton's laws to check your answers. Neglect air resist

ance in all cases. (a) A branch falls from the top of a 95.0-m-tall redwood tree, starting from rest. How fast is it moving when it reaches the ground? (b) A volcano ejects a boulder directly upward 525 m into the air. How fast was the boulder mov-ing just as it left the volcano?
Physics
1 answer:
andreyandreev [35.5K]2 years ago
3 0

Answer:

a) It is moving at 43.15\frac{m}{s^{2}} when reaches the ground.

b) It is moving at 101.44\frac{m}{s^{2}} when reaches the ground.

Explanation:

Work energy theorem states that the total work on a body is equal its change in kinetic energy, this is:

W=K_f-K_i (1)

with W the total work, Ki the initial kinetic energy and Kf the final kinetic energy. Kinetic energy is defined as:

K=\frac{mv^2}{2} (2)

with m the mass and v the velocity.

Using (2) on (1):

W=\frac{mv_f^2}{2}-\frac{mv_i^2}{2} (3)

In both cases the total work while the objects are in the air is the work gravity field does on them. Work is force times the displacement, so in our case is weight (w=mg) of the object times displacement (d):

W=Fd=wd=mgd (4)

Using (4) on (3):

mgd=\frac{mv_f^2}{2}-\frac{mv_i^2}{2} (5)

That's the equation we're going to use on a) and b).

a) Because the branch started form rest initial velocity (vi) is equal zero, using this and solving (5) for final velocity:

v_f=\sqrt{\frac{2mgd}{m}}=\sqrt{2gd}=\sqrt{2*9.8*95}

v_f=43.15\frac{m}{s^{2}}

b) In this case the final velocity of the boulder is instantly zero when it reaches its maximum height, another important thing to note is that in this case work is negative because weight is opposing boulder movement, so we should use -mgd:

-mgd=-\frac{mv_i^2}{2}

Solving for initial velocity (when the boulder left the volcano):

v_i=\sqrt{\frac{2mgd}{m}}=\sqrt{2gd}=\sqrt{2*9.8*525}

v_i=101.44 \frac{m}{s^{2}}

You might be interested in
When a wave is acted upon by an external damping force what happens to the energy of the wave
Nimfa-mama [501]

Answer:

A-the energy of the wave decreases gradually

Explanation:

when a wave is acted upon by an external damping force the energy of the wave decreases gradually.

The energy degrades into the form of heat which is considered to be of less value and use. The reason is because it disperses and spreads more widely.

So therefore it end up as heat with a little sound but that is close to none because that too disperses into heat i.e. decreased form of energy.

4 0
3 years ago
Water moves through a constricted pipe in steady, ideal flow. At the
Irina-Kira [14]

A) Speed in the lower section: 0.638 m/s

B) Speed in the higher section: 2.55 m/s

C) Volume flow rate: 1.8\cdot 10^{-3} m^3/s

Explanation:

A)

To solve the problem, we can use Bernoulli's equation, which states that

p_1 + \rho g h_1 + \frac{1}{2}\rho v_1^2 = p_2 + \rho g h_2 + \frac{1}{2}\rho v_2^2

where

p_1=1.75\cdot 10^4 Pa is the pressure in the lower section of the tube

h_1 = 0 is the heigth of the lower section

\rho=1000 kg/m^3 is the density of water

g=9.8 m/s^2 is the acceleration of gravity

v_1 is the speed of the water in the lower pipe

p_2 is the pressure in the higher section

h_2 = 0.250 m is the height in the higher pipe

v_2 is hte speed in the higher section

We can re-write the equation as

v_1^2-v_2^2=\frac{2(p_2-p_1)+\rho g h_2}{\rho} (1)

Also we can use the continuity equation, which state that the volume flow rate is constant:

A_1 v_1 = A_2 v_2

where

A_1 = \pi r_1^2 is the cross-section of the lower pipe, with

r_1 = 3.00 cm =0.03 m is the radius of the lower pipe (half the diameter)

A_2 = \pi r_2^2 is the cross-section of the higher pipe, with

r_2 = 1.50 cm = 0.015 m (radius of the higher pipe)

So we get

r_1^2 v_1 = r_2^2 v_2

And so

v_2 = \frac{r_1^2}{r_2^2}v_1 (2)

Substituting into (1), we find the speed in the lower section:

v_1^2-(\frac{r_1^2}{r_2^2})^2v_1^2=\frac{2(p_2-p_1)+\rho g h_2}{\rho}\\v_1=\sqrt{\frac{2(p_2-p_1+\rho g h_2)}{\rho(1-\frac{r_1^4}{r_2^4})}}=0.638 m/s

B)

Now we can use equation (2) to find the speed in the lower section:

v_2 = \frac{r_1^2}{r_2^2}v_1

Substituting

v1 = 0.775 m/s

And the values of the radii, we find:

v_2=\frac{0.03^2}{0.015^2}(0.638)=2.55 m/s

C)

The volume flow rate of the water passing through the pipe is given by

V=Av

where

A is the cross-sectional area

v is the speed of the water

We can take any point along the pipe since the volume  flow rate is constant, so

r_1=0.03 cm

v_1=0.638 m/s

Therefore, the volume flow rate is

V=\pi r_1^2 v_1 = \pi (0.03)^2 (0.638)=1.8\cdot 10^{-3} m^3/s

Learn more about pressure in a liquid:

brainly.com/question/9805263

#LearnwithBrainly

0 0
3 years ago
Question 3
pickupchik [31]
When a police officer is trying to decide if a driver is speeding, what is his point of reference. The speed limit
4 0
2 years ago
The activity of a radioisotope is found to decrease 40% of its original value in 2.59 x 10 s.
Rainbow [258]

Answer: 0.0353\ s^{-1}

Explanation:

Given

Radioactive material is found to decrease 40% of its original value in 2.59\times 10\ s

Sample at any time is given by

N=N_oe^{-\lambda t}

where, \lambda=\text{decay constant}

Put values

\Rightarrow 0.4N_o=N_oe^{-\lambda\cdot 2.59\times 10}\\\Rightarrow 0.4=e^{-\lambda\cdot 2.59\times 10

Taking natural logarithm both side

\Rightarrow \lambda=\dfrac{\ln 2.5}{25.9}\\\\\Rightarrow \lambda =0.0353\ s^{-1}

8 0
3 years ago
The noble gas neon is used for filling neon signs. Like other noble elements, it has a full octet (complete outer energy level)
DanielleElmas [232]

Answer:

C. unlikely to combine with other elements.

Explanation:

In Chemistry, electrons can be defined as subatomic particles that are negatively charged and as such has a magnitude of -1.

Valence electrons can be defined as the number of electrons present in the outermost shell of an atom. Valence electrons are used to determine whether an atom or group of elements found in a periodic table can bond with others. Thus, this property is typically used to determine the chemical properties of elements.

Noble gases are chemical elements with eight valence electrons and as such have a full octet. Some examples are argon, neon, etc.

Hence, the full octet makes the gas (neon) unlikely to combine with other elements.

7 0
3 years ago
Other questions:
  • Tala wants to create a sound echo. She can create the echo using a pane of glass or a carpet square. Which one does she choose?
    14·1 answer
  • What will happen when the north pole of a magnet is placed against the south pole of another magnet?
    11·1 answer
  • While painting the top of an antenna 275 m in height, a worker accidentally lets a 1.00 L water bottle fall from his lunchbox. T
    8·1 answer
  • A 180-ohm resistor has 0.10 A of current in it. what is the potential difference across the resistor
    5·1 answer
  • Heat is transferred from the sun to the earth via electromagnetic waves (see Chapter 24). Because of this transfer, the entropy
    12·1 answer
  • During the new moon phase, why is the Moon not visible in the sky?
    7·1 answer
  • Pluto has a shape that is nearly round,and it orbits the sun,it has five known moons.why is it called a dwarf planet and not a p
    10·1 answer
  • Define the following terms: a) Heating effect of electric current b) Magnetic effect of electric current. c) Electric fuse. d) T
    14·1 answer
  • Translate the word phrase into an algebraic equation: the quotient of 22 and 2 is equal to 11.
    13·1 answer
  • Although centuries ago, astronomers thought that a nova was a new star, appearing for the first time in the heavens, today we kn
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!