Answer:
Moment of inertia = 0.3862kg-m²
Explanation:
2.00x10³
2.80cm
145 rad
r = r⊥ x F
F is an applied force
r⊥ is the distance between the applied force and axis
Force exerted = 2.00x10³
r⊥ = 2.8cm = 0.028m
Alpha = 145rad/s²
r = 0.028m x 2.00x10³
r = 56.0N-m
To get the moment of inertia
56.0N-m² = (145rad/s²) x I
The I would be:
I = (56.0N-m²)/(145rad/s²)
I = 56/145
= 0.3862Kg-m²
This is the moment of inertia.
Thank you!
Answer: An iron atom emits particles when it is struck by light (by the photoelectric effect)
Explanation:
The first atomic model was the one proposed by Jhon Dalton, according to which it is postulated that:
"Matter is made up of indivisible, indestructible and extremely small particles called atoms."
That is, <u>the atom is a solid and indivisible mass.
</u>
However, the fenomenom by which an iron atom emits particles when it is struck by light (known as the photoelectric effect) can not be explaind by this<u> indivisible atom</u> model.
To understand it better:
The <u>photoelectric effect</u> consists of the emission of electrons (electric current) that occurs when light falls on a metal surface under certain conditions.
This is possible by considering light as a stream of photons, where each of them has energy. <u>This energy is be able to pull an electron out of the crystalline lattice of the metal and communicate, in addition, a kinetic energy. </u>This means the atom is not indivisible, but it is a composition of different particles.
In fact, currently it is known that each atom is composed of a nucleus and one or more electrons attached to the nucleus, which is composed of one or more protons and typically a similar number of neutrons.
Answer:
No, just because the electric field is zero at a particular point, it does not necessarily mean that the electric potential is zero at that point. ... At the midpoint between the charges, the electric field due to the charges is zero, but the electric potential due to the charges at that same point is non-zero.
Explanation:
First harmonic of a closed pipe is determined as velocity, v, to four times length (4L), F₀ v/4L.
<h3>
First harmonic of a closed pipe</h3>
The first harmonic of a closed pipe is the fundamental frequency of the closed of the closed pipe.
L = λ/4
where;
- L is the length of the pipe
- λ is the wavelength of sound
λ = 4L
But, v = F₀λ
v = F₀(4L)
F₀ = v/4L
where;
- F₀ is the first harmonic
- v is speed of sound
Thus, first harmonic of a closed pipe is determined as velocity, v, to four times length (4L), F₀ v/4L.
Learn more about fundamental frequency here: brainly.com/question/1967686
#SPJ11
<h3 />
Answer:
Both
Explanation:
The S.I. unit of pressure is newton/meter square or pascal as both represent the same dimensional value.