
So, according to the question:
distance = 90 miles
time = 1h 45min + 15 min + 1h = 3h

The acceleration due to gravity on Jupiter is 24.79 m/s²,
compared to 9.8 m/s² on Earth ... a ratio of about 2.53 .
So if a person or object were somehow transported to Jupiter,
he/it would weigh
(2.53) times (Earth weight)
there.
What well u can use to make a shelter but that's all I can think of ??
Answer:

Explanation:
Given:
height above the horizontal form where the ball is hit, 
angle of projectile above the horizontal, 
initial speed of the projectile, 
<u>Firstly we find the </u><u>vertical component of the initial velocity</u><u>:</u>



During the course of ascend in height of the ball when it reaches the maximum height then its vertical component of the velocity becomes zero.
So final vertical velocity during the course of ascend:
Using eq. of motion:
(-ve sign means that the direction of velocity is opposite to the direction of acceleration)

(from the height where it is thrown)
<u>Now we find the time taken to ascend to this height:</u>



<u>Time taken to descent the total height:</u>
- we've total height,


- during the course of descend its initial vertical velocity is zero because it is at the top height, so



<u>Now the total time taken by the ball to hit the ground:</u>



Answer:
From question (a) and (b) the pendulum motion is perpendicular to the force so the normal force will do no work and the tension in the string of the pendulum will not work

And
so

c
An example will be a where a stone is attached to the end of a string and is made to move in a circular motion while keeping the other end of the string in a fixed position
d
A dog walking along a surface which has friction, here the frictional force would acting in the direction of the motion and this would do positive work
Explanation: