Answer:
ΔU = e(V₂ - V₁) and its value ΔU = -2.275 × 10⁻²¹ J
Explanation:
Since the electric potential at point 1 is V₁ = 33 V and the electric potential at point 2 is V₂ = 175 V, when the electron is accelerated from point 1 to point 2, there is a change in electric potential ΔV which is given by ΔV = V₂ - V₁.
Substituting the values of the variables into the equation, we have
ΔV = V₂ - V₁.
ΔV = 175 V - 33 V.
ΔV = 142 V
The change in electric potential energy ΔU = eΔV = e(V₂ - V₁) where e = electron charge = -1.602 × 10⁻¹⁹ C and ΔV = electric potential change from point 1 to point 2 = 142 V.
So, substituting the values of the variables into the equation, we have
ΔU = eΔV
ΔU = eΔV
ΔU = -1.602 × 10⁻¹⁹ C × 142 V
ΔU = -227.484 × 10⁻¹⁹ J
ΔU = -2.27484 × 10⁻²¹ J
ΔU ≅ -2.275 × 10⁻²¹ J
So, the required equation for the electric potential energy change is
ΔU = e(V₂ - V₁) and its value ΔU = -2.275 × 10⁻²¹ J
Answer:
<h2>151.8 N</h2>
Explanation:
The force acting on the blimp can be found by using the formula
<h3>f = p × a</h3>
p is the pressure
a is the area
3000 cm² = 0.3 m²
From the question we have
f = 506 × 0.3
We have the final answer as
<h3>151.8 N</h3>
Hope this helps you
Answer:
Explanation:
Since the door that leads to the room is opened, this gives room for particles to move into the next identical room and divided into octants. Now the amount of space that can be occupied becomes double, the number of basic states has increased by 404916
Answer:

Explanation:
From the question we are told that

Generally the equation for momentum is mathematically given by

Therefore
T-Joe momentum 

