The answer is d. experiment
Answer:
the fraction of submerged volume is equal to the ratio of the densities of the body between the density of the fluid.
Explanation:
This is a fluid mechanics problem, where as the boat is in equilibrium with the pushing force we can write Newton's second law
B- W = 0
B = W
the thrust force is equal to the weight of the liquid that is dislodged
B = ρ g V
we substitute
ρ g V = m g
V = m /ρ_fluid 1
we can write the mass of the pot as a function of its density
ρ_body = m / V_body
m = ρ_body V_body
V_fluid / V_body = ρ_body / ρ _fluid 2
Equations 1 and 2 are similar, although 2 is easier to analyze, the fraction of submerged volume is equal to the ratio of the densities of the body between the density of the fluid.
The effect appears the pot as if it had a lower apparent weight
The unit for power is Watts. the newton is a unit for force. joules for energy and meters for distance
<em>friction transforms KE into thermal energy (a)</em>
That's why, if it goes on long enough, the moving object actually gets warm.
Answer:
Δ h = 52.78 m
Explanation:
given,
Atmospheric pressure at the top of building = 97.6 kPa
Atmospheric pressure at the bottom of building = 98.2 kPa
Density of air = 1.16 kg/m³
acceleration due to gravity, g = 9.8 m/s²
height of the building = ?
We know,
Δ P = ρ g Δ h
(98.2-97.6) x 10³ = 1.16 x 9.8 x Δ h
11.368 Δ h = 600
Δ h = 52.78 m
Hence, the height of the building is equal to 52.78 m.