Answer:
(a) Height is 4.47 m
(b) Height is 4.37 m
Solution:
As per the question:
Initial velocity of teh ball, 
Angle made by the ramp, 
Distance traveled by the ball on the ramp, d = 5.00 m
Now,
(a) At any point on the projectile before attaining maximum height, the velocity can be given by the eqn-3 of motion:

where
H =
g = 

= 19.06 m/s
Now, maximum height attained is given by:


Height from the ground = 
(b) now, considering the coefficient of friction bhetween ramp and the ball,
:
velocity can be given by the eqn-3 of motion:


= 18.7 m/s
Now, maximum height attained is given by:


Height from the ground = 
Answer:
0.044 V
Explanation:
E = Electric field = 
d = Thickness of membrane = 8 nm
When the electric field strength is multiplied by the membrane thickness we get the voltage
Voltage across a gap is given by

The voltage across the membrane is 0.044 V
Answer:
heya answer option b
Explanation:
please mark me brainliest
Answer:
a) T² = (
) r³
b) veloicity the dependency is the inverse of the root of the distance
kinetic energy depends on the inverse of the distance
potential energy dependency is the inverse of distance
angular momentum depends directly on the root of the distance
Explanation:
1) for this exercise we will use Newton's second law
F = ma
in this case the acceleration is centripetal
a = v² / r
the linear and angular variable are related
v = w r
we substitute
a = w² r
force is the universal force of attraction
F = 
we substitute

w² = 
angular velocity is related to frequency and period
w = 2π f = 2π / T
we substitute

the final equation is
T² = () r³
b) the speed of the orbit can be found
v = w r
v = 
v = 
in this case the dependency is the inverse of the root of the distance
Kinetic energy
K = ½ M v²
K = ½ M GM / r
K = ½ GM² 1 / r
the kinetic energy depends on the inverse of the distance
Potential energy
U =
U = -G mM / r
dependency is the inverse of distance
Angular momentum
L = r x p
for a circular orbit
L = r p = r Mv
L =
L =
The angular momentum depends directly on the root of the distance