Answer: Length, thickness, and temperature
Explanation:
I did it
A small boy is playing with a ball on a stationary train. If he places the ball on the floor of the train, when the train starts moving the ball moves toward the back of the train. This happened due to inertia
An object at rest remains at rest, or if in motion, remains in motion unless a net external force acts on it .
When a train starts moving forward, the ball placed on the floor tends to fall backward is an example of inertia of rest. Due to the reason that the lower part of the ball is in contact with the surface and rest of the part is not . As the train starts moving, its lower part gets the motion as the floor starts moving but the upper part will remain as it is as it is not in contact with the floor , hence do not attain any motion due to the inertia of rest simultaneously i.e. it tends to remain at the same place.
To learn more about inertia here :
brainly.com/question/11049261
#SPJ1
It MUST be either glue or gravity.
Answer:
The value is 
Explanation:
From the question we are told that
The mass of the ice cube is 
The temperature of the ice cube is
The mass of the copper cube is 
The final temperature of both substance is 
Generally form the law of thermal energy conservation,
The heat lost by the copper cube = heat gained by the ice cube
Generally the heat lost by the copper cube is mathematically represented as
![Q = m_c * c_c * [T_c - T_f ]](https://tex.z-dn.net/?f=Q%20%3D%20%20m_c%20%20%2A%20%20c_c%20%2A%20%20%5BT_c%20%20-%20%20T_f%20%5D)
The specific heat of copper is 
Generally the heat gained by the ice cube is mathematically represented as

Here L is the latent heat of fusion of the ice with value 
So

=>
So
=> 