1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kolezko [41]
3 years ago
8

A common physics demonstration is to drop a small magnet down a long, vertical aluminum pipe. Describe the motion of the magnet

through the pipe and explain the physical processes that cause this motion.

Physics
2 answers:
Rzqust [24]3 years ago
7 0

Answer and Explanation:

This experiment is known as Lenz's tube.

The Lenz tube is an experiment that shows how you can brake a magnetic dipole that goes down a tube that conducts electric current. The magnet, when falling, along with its magnetic field, will generate variations in the magnetic field flux within the tube. These variations create an emf induced according to Faraday's Law:

\varepsilon =-\frac{d\phi_B}{dt}

This emf induced on the surface of the tube generates a current within it according to Ohm's Law:

V=IR

This emf and current oppose the flux change, therefore a field will be produced in such a direction that the magnet is repelled from below and is attracted from above. The magnitude of the flux at the bottom of the magnet increases from the point of view of the tube, and at the top it decreases. Therefore, two "magnets" are generated under and above the dipole, which repel it below and attract above. Finally, the dipole feels a force in the opposite direction to the direction of fall, therefore it falls with less speed.

Vladimir [108]3 years ago
4 0

Answer:

Check below for the answer and explanation

Explanation:

According to Faraday's law of electromagnetic induction, if a conductor is exposed to changing magnetic flux, an emf and hence a current is induced in the conductor. The strength of the induced emf is directly proportional to the rate of change of the magnetic flux.

Induced emf, e =-N\frac{d \phi}{dt}

Induced current, I = e/R

In this example, as magnet is dropped down the aluminium pipe, the magnetic flux changes, and current is induced in the pipe.

According to Lenz's law, the direction of the induced current in the conductor opposes the direction of the magnetic flux that produces it.

Based on these stated laws, current is induced in this aluminium pipe and the direction of this induced current opposes the magnetic flux change. The magnetic field is repelled and falls slowly.

You might be interested in
How fast can the 140 a current through a 0.200 h inductor be shut off if the induced emf cannot exceed 80.0 v?
Vesna [10]
Recall that to compute for the emf of a circuit given current and inductance, we must recall that 

emf = - M \frac{\Delta I }{\Delta t}

where I is the current (A), M is the mutual inductance (h), and t is the time (ms). Since the current must not exceed 80.0 V, we have

80.0 \geq 0.200(\frac{140}{t})
t \geq \frac{28.0}{80}
t \geq 0.35

From this, we see that it must take at least 0.35 ms so it doesn't exceed 80 V.
Answer: 0.35 ms

7 0
3 years ago
Which branch of science involves the study of matter and energy
Olin [163]
Physics<span> is a natural science that involves the study of matter and its motion through space time, along with related concepts such as energy and force.</span>
6 0
3 years ago
Read 2 more answers
A lorry of mass 4000 kg is travelling at a speed of 4 m/s.
bulgar [2K]

Answer:

KE = 32,000J

v = 8m/s

Explanation:

KE = .5*m*v²

KE = .5*4000kg*(4m/s)²

KE = 32,000J

32,000J = .5*1000kg*v²

v² = 64

v = 8m/s

7 0
3 years ago
In the Bohr model of hydrogen, the electron moves in a circular orbit around the nucleus. (a) Determine the orbital frequency of
Airida [17]

Answer:

(a) 6.567 * 10^15 rev/s or hertz

(b) 8.21 * 10^14 rev/s or hertz

Explanation:

Fn= 4π^2k^2e^4m * z^2/(h^3*n^3)

Where Fn is frequency at all levels of n.

Z = 1 (nucleus)

e = 1.6 * 10^-19c

m = 9.1 * 10^-31 kg

h = 6.62 * 10-34

K = 9 * 10^9 Nm2/c2

(a) for groundstate n = 1

Fn = 4 * π^2 * (9*10^9)^2*(1.6*10^-19)^4* (9.1 * 10^-31) * 1 / (6.62 * 10^-31)^3 = 6.567 * 10^15 rev/s

(b) first excited state

n = 1

We multiple the groundstate answer by 1/n^3

6.567 * 10^15 rev/s/ 2^3

F2 = 8.2 * 10^ 14 rev/s

3 0
3 years ago
Consider the following True/False statements:
Ainat [17]

Answer:

6) False

7) True

8) False

9) False

10) False

11) True

12) True

13) True

14) True

Explanation:

The spacing between two energy levels in an atom shows the energy difference between them. Clearly, B has a greater value of ∆E compared to A. This implies that the wavelength emitted by B is greater than A while B will emit fewer, more energetic photons.

When atoms jump from lower to higher energy levels, photons are absorbed. The kinetic energy of the incident photon determines the frequency, wavelength and colour of light emitted by the atom.

The energy level to which an atom is excited is determined by the kinetic energy of the incident electron. As the voltage increases, the kinetic energy of the electron increases, the further the atom is from the source of free electrons, the greater the required kinetic energy of free electron. When electrons are excited to higher energy levels, they must return to ground state.

4 0
3 years ago
Other questions:
  • How much energy does it take to melt a 16.87 g ice cube? ΔHfus = 6.02 kJ/mol How much energy does it take to melt a 16.87 g ice
    9·1 answer
  • Select all that apply. Which of the following have energy stored as chemical energy? nuclear petroleum biomass geothermal
    13·2 answers
  • Density is the ratio of an object’s mass to its volume. would you expect density to be a vector or a scalar quantity? explain.
    5·1 answer
  • _____ is an electronics standard that allows different kinds of electronic instruments to communicate with each other and with c
    12·1 answer
  • In your own words explain Newton’s law of universal gravitation?
    10·2 answers
  • A horse runs for 15 seconds to the south at a speed of 12 m/s. What is the
    12·1 answer
  • The rotating nozzle sprays a large circular area and turns with the constant angular rate theta overscript dot endscripts = 2.2
    6·1 answer
  • The eccentricity of an asteroid's orbit is 0.0442, and the semimajor axis is 1.12 x 1011 m. The Sun's center is at one focus of
    7·1 answer
  • What is critical to being an active listener?
    11·1 answer
  • Future space stations will create an artificial gravity by rotating. Consider a cylindrical space station 780 m diameter rotatin
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!