Answer: Yes.
Explanation:
Oxygen has a bond order of two. The bond order of Oxygen molecule is calculated, where the [<em>eight valence electrons in bonding molecular orbitals</em> minus (-) <em>four valence electrons in antibonding molecular orbitals</em>]/2 in the electron configuration.
Atoms/molecules where electrons are paired are diamagnetic (repelled by both poles of a magnetic); while atoms/molecules that have one or more unpaired electrons are paramagnetic (attracted to magnetic field).
The two unpaired electrons of dioxygen molecules has made it <u>paramagnetic</u>. By pouring liquid oxygen between the poles of a strong magnet, the liquid stream will be contained by the filed and fills up the space between the poles.
The correct answer is:
the distance of the orbiting object to Earth.
In fact, we know that the gravitational force that keeps the object in circular motion around the Earth is equal to the centripetal force, so we can write:
If we re-arrange the equation, we find an expression for the tangential speed of the object:

and we see that it depends on 3 quantities: G, M (the mass of the Earth) and r (the distance of the object from the Earth).
The atomic number is the number of protons in the nucleus of an atom. The number of protons define the identity of an element (i.e., an element with 6 protons is a carbon
So I believe it’s 6 hope this helps if not reply back
Answer:
0.687 m/s
Explanation:
Initial energy = final energy
1/2 mu² = mgh + 1/2 mv²
1/2 u² = gh + 1/2 v²
Given u = 2.00 m/s, g = 9.8 m/s², and h = 0.180 m:
1/2 (2.00 m/s)² = (9.8 m/s²) (0.180 m) + 1/2 v²
v = 0.687 m/s