The distance between the charges is 13.86 X 10⁴m
<u>Explanation:</u>
Given:
Force, F = 1.2N
Charge, q₁ = 1.602 X 10⁻¹⁹ C
k = 8.987 X 10⁹ Nm²/C²
Distance, d = ?
According to Coulomb's law:
Substituting the value in the formula we get:
Therefore, the distance between the charges is 13.86 X 10⁴m
Answer:
can you show a graph but if not i believe the answer is x=6m
Explanation:
We shall convert all of the densities to lbs/gal, so the product of
BTU/lbs and lbs/gal gives us the basis of comparison, which was "ratio of energy to volume".
grams / ml x 1 lbs/454 grams → 1 lbs/ 454 ml
1 lbs/454 ml x 3785.41 ml/gal → 3785.41 lbs/454gal
Conversion of g/ml = 8.34 lbs/gal
Looking at each fuel:
Kerosene:
18,500 x (8.34 x 0.82) = 126,517 BTU/gal
Gasoline:
20,900 x (8.34 x 0.737) = 128,463 BTU/gal
Ethanol:
11,500 x (8.34 x 0.789) = 75,673 BTU/gal
Hydrogen:
61,000 x (8.34 x 0.071) = 36,120 BTU/gal
The best fuel in terms of energy to volume ratio is Gasoline.
Gallons required:
BTU needed / BTU per gallon
= 85.2 x 10⁹ / 128,463
= 6.6 x 10⁵ gallons
Answer:
E = 3.8 kJ
Explanation:
Given that,
The mass of the object, m = 10 g = 0.01 kg
The heat of fusion of aluminum is 380 kJ/kg
We need to find the energy required to melt the mass of the aluminium. It can be calculated as follows:
E = mL
So,
E = 0.01 × 380
E = 3.8 kJ
So, the energy required to melt the mass is equal 3.8 kJ.
Answer:
Sound travels faster in liquids than in gases because molecules are packed more closely together. This means that when the water molecules begin to vibrate, they quickly begin to collide with each other forming a rapidly moving compression wave. Sound travels over four times faster than in air
Explanation: