1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sergeu [11.5K]
3 years ago
14

a 25 newton force applied on an object moves it 50 meters. the angle between the force and displacement is 40.0°. what is the va

lue of work being done on the object? a. 0 joules b. 9.6 × 102 joules c. 1.2 × 103 joules d. -9.6 × 102 joules e. -1.2 × 103 joules
Physics
1 answer:
LiRa [457]3 years ago
3 0
Work = force × distance × cos(angle)

work = (25)(50)(cos (40))

work = 957.56 Joules

= 9.6x10^2 Joules
You might be interested in
In a second experiment, you decide to connect a string which has length L from a pivot to the side of block A (which has width d
Salsk061 [2.6K]

Answer:

The answer is in the explanation

Explanation:

A)

i) The blocks will come to rest when all their initial kinetic energy is dissipated by the friction force acting on them. Since block A has higher initial kinetic energy, on account of having larger mass, therefore one can argue that block A will go farther befoe coming to rest.

ii) The force on friction acting on the blocks is proportional to their mass, since mass of block B is less than block A, the force of friction acting on block B is also less. Hence, one might argue that block B will go farther along the table before coming to rest.

B) The equation of motion for block A is

m_{A}\frac{\mathrm{d} v}{\mathrm{d} t} = -m_{A}g\nu_{s}\Rightarrow \frac{\mathrm{d} v}{\mathrm{d} t} = -\nu_{s}g \quad (1)

Here, \nu_{s} is the coefficient of friction between the block and the surface of the table. Equation (1) can be easily integrated to get

v(t) = C-\nu_{s}gt \quad (2)

Here, C is the constant of integration, which can be determined by using the initial condition

v(t=0) = v_{0}\Rightarrow C = v_{0} \quad (3)

Hence

v(t) = v_{0} - \nu_{s}gt \quad (4)

Block A will stop when its velocity will become zero,i.e

0 = v_{0}-\nu_{s}gT\Rightarrow T = \frac{v_{0}}{\nu_{s}g} \quad (5)

Going back to equation (4), we can write it as

\frac{\mathrm{d} x}{\mathrm{d} t} = v_{0}-\nu_{s}gt\Rightarrow x(t) = v_{0}t-\nu_{s}g\frac{t^{2}}{2}+D \quad (6)

Here, x(t) is the distance travelled by the block and D is again a constant of integration which can be determined by imposing the initial condition

x(t=0) = 0\Rightarrow D = 0 \quad (7)

The distance travelled by block A before stopping is

x(t=T) = v_{0}T-\nu_{s}g\frac{T^{2}}{2} = v_{0}\frac{v_{0}}{\nu_{s}g}-\nu_{s}g\frac{v_{0}^{2}}{2\nu_{s}^{2}g^{2}} = \frac{v_{0}^{2}}{2\nu_{s}g} \quad (8)

C) We can see that the expression for the distance travelled for block A is independent of its mass, therefore if we do the calculation for block B we will get the same result. Hence the reasoning for Student A and Student B are both correct, the effect of having larger initial energy due to larger mass is cancelled out by the effect of larger frictional force due to larger mass.

D)

i) The block A is moving in a circle of radius L+\frac{d}{2} , centered at the pivot, this is the distance of pivot from the center of mass of the block (assuming the block has uniform mass density). Because of circular motion there must be a centripetal force acting on the block in the radial direction, that must be provided by the tension in the string. Hence

T = \frac{m_{A}v^{2}}{L+\frac{d}{2}} \quad (9)

The speed of the block decreases with time due to friction, hence the speed of the block is maximum at the beginning of the motion, therfore the maximum tension is

T_{max} = \frac{m_{A}v_{0}^{2}}{L+\frac{d}{2}} \quad (10)

ii) The forces acting on the block are

a) Tension: Acting in the radially inwards direction, hence it is always perpendicular to the velocity of the block, therefore it does not change the speed of the block.

b) Friction: Acting tangentially, in the direction opposite to the velocity of the block at any given time, therefore it decreases the speed of the block.

The speed decreases linearly with time in the same manner as derived in part (C), using the expression for tension in part (D)(i) we can see that the tension in the string also decreases with time (in a quadratic manner to be specific).

8 0
2 years ago
The atoms in a sidewalk on a hot summer day are vibrating _____ the atoms in the sidewalk on a freezing day in winter.
Karolina [17]

Answer:

(A) more rapidly than

Explanation:

With higher temperatures, object's molecules (and atoms) have higher kinetic energy which is due to faster "jiggling" (vibrations). On a hot day these vibrations in the material the sidewalk is made of are more rapid than on a cold day, just as their temperatures differ.

7 0
2 years ago
Read 2 more answers
A scooter is traveling at a constant speed v when it encounters a circular hill of radius r = 480 m. The driver and scooter toge
Grace [21]

Answer:

68.585m/sec , 779.1 N

Explanation:

To feel weightless, centripetal acceleration must equal g (9.8m/sec^2). The accelerations then cancel.

From centripetal motion.

F =( mv^2)/2

But since we are dealing with weightlessness

r = 480m

g = 9.8m/s^2

M also cancels, so forget M.

V^2 = Fr

V = √ Fr

V =√ (9.8 x 480) = 4704

= 68.585m/sec.

b) Centripetal acceleration = (v^2/2r) = (68.585^2/960) = 4704/960

= 4.9m/sec^2.

Weight (force) = (mass x acceleration) = 159kg x (g - 4.9)

159kg × ( 9.8-4.9)

159kg × 4.9

= 779.1N

6 0
3 years ago
What happens when the elevator is in free-fall, that is, what is the value for FN and what is the sensation experienced by the p
Komok [63]

Answer:

Weightlessness

Explanation:

When the elevator is in free fall, this can only occur when the cord of the elevator breaks.

The acceleration of the elevator will be equal to the acceleration due to gravity. That is:

a = g

Then, the body will experience what we called WEIGHTLESSNESS

Where the normal reaction N of the person will tend to zero. That is

N = 0

The value of FN < 0 because the person inside the lift will experience weightlessness.

7 0
2 years ago
How far will it go, given that the coefficient of kinetic friction is 0.10 and the push imparts an initial speed of 3.9 m/s ?
Akimi4 [234]

Answer:19.5 m

Explanation:

Given

coefficient of kinetic Friction \mu _k=0.10

Initial speed u=3.9\ m/s

Friction is present so it tries to stop to the object and stops it completely after moving certain distance let say s

maximum deceleration provided by friction is

a_{max}=\mu _k\cdot g

a_{max}=0.1\times 3.9=0.39\ m/s^2

using equation of motion

v^2-u^2=2 as

where v=final\ velocity

u=initial velocity

a=acceleration

s=displacement

(0)-(3.9)^2=2\times (-0.39)\times s

s=19.5\ m

6 0
2 years ago
Other questions:
  • The charger for your electronic devices is a transformer. Suppose a 60 HzHz outlet voltage of 120 VV needs to be reduced to a de
    15·1 answer
  • A hot air ballo0n is ascending straight up at a constant
    15·1 answer
  • A lever is placed on a fulcrum. A rock is placed on the right end of the lever and a downward (counterclockwise) force is applie
    10·1 answer
  • 1- ¿Cuál sería la energía de un objeto de 50 newton de peso que se encuentra sobre una estantería de 3 metros de altura? ¿Qué ti
    8·1 answer
  • A 0.50-kg object moves in a horizontal circular track with a radius of 2.5 m. An external forceof 3.0 N, always tangent to the t
    15·1 answer
  • What is the momentum of a 950 kg car moving at 10.0 m/s?
    9·2 answers
  • A Ferris wheel has a radius R of 9.3 m and rotates four times each minute.
    11·1 answer
  • How is density calculated given mass and volume? (1 point) Question 8 options: 1) Mass divided by volume 2) Mass multiplied by v
    13·1 answer
  • As your bike coasts downhill, your speed goes from 2 m/s to 4 m/s in 0.5 seconds. What is your acceleration?
    8·2 answers
  • Please helppppppp!!!!!!!!!!!!!!!!!!!!!!!!
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!