<h2>
Answer: 0.17</h2>
Explanation:
The Stefan-Boltzmann law establishes that a black body (an ideal body that absorbs or emits all the radiation that incides on it) "emits thermal radiation with a total hemispheric emissive power proportional to the fourth power of its temperature":
(1)
Where:
is the energy radiated by a blackbody radiator per second, per unit area (in Watts). Knowing 
is the Stefan-Boltzmann's constant.
is the Surface area of the body
is the effective temperature of the body (its surface absolute temperature) in Kelvin.
However, there is no ideal black body (ideal radiator) although the radiation of stars like our Sun is quite close. So, in the case of this body, we will use the Stefan-Boltzmann law for real radiator bodies:
(2)
Where
is the body's emissivity
(the value we want to find)
Isolating
from (2):
(3)
Solving:
(4)
Finally:
(5) This is the body's emissivity
<span>The acceleration of the bullet is called ACTION.
</span>Formally stated, Newton's third law<span> is: For every action, there is an equal and opposite reaction. The statement means that in every interaction, there is a pair of forces acting on the two interacting objects. The size of the forces on the first object equals the size of the force on the second object.
</span>
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
A. A child rubs a balloon
The correct answer Is B-balanced
Answer:
2400 J
Explanation:
Latent heat: This is also called hidden heat, it is the heat that is not detectable by the thermometer.
From the question,
Q = cm.................. Equation 1
Where Q = Energy, c = specific latent heat of the liquid, m = mass of the liquid.
Given: c = 4000 J/kg, m = 600 g =( 600/1000) kg = 0.6 kg
Substitute these values into equation 1
Q = 4000×0.6
Q = 2400 J
Hence the energy required is 2400 J