Answer:
The right solution is "2625 kN".
Explanation:
According to the question,
The average pressure will be:
= 
By putting values, we get
= 
= 
= 
hence,
The average force will be:
= 
= 
= 
Or,
= 
Answer:
8.85 Ω
Explanation:
Resistance of a wire is:
R = ρL/A
where ρ is resistivity of the material,
L is the length of the wire,
and A is the cross sectional area.
For a round wire, A = πr² = ¼πd².
For aluminum, ρ is 2.65×10⁻⁸ Ωm, or 8.69×10⁻⁸ Ωft.
Given L = 500 ft and d = 0.03 in = 0.0025 ft:
R = (8.69×10⁻⁸ Ωft) (500 ft) / (¼π (0.0025 ft)²)
R = 8.85 Ω
Answer:
a) at T = 5800 k
band emission = 0.2261
at T = 2900 k
band emission = 0.0442
b) daylight (d) = 0.50 μm
Incandescent ( i ) = 1 μm
Explanation:
To Calculate the band emission fractions we will apply the Wien's displacement Law
The ban emission fraction in spectral range λ1 to λ2 at a blackbody temperature T can be expressed as
F ( λ1 - λ2, T ) = F( 0 ----> λ2,T) - F( 0 ----> λ1,T )
<em>Values are gotten from the table named: blackbody radiati</em>on functions
<u>a) Calculate the band emission fractions for the visible region</u>
at T = 5800 k
band emission = 0.2261
at T = 2900 k
band emission = 0.0442
attached below is a detailed solution to the problem
<u>b)calculate wavelength corresponding to the maximum spectral intensity</u>
For daylight ( d ) = 2898 μm *k / 5800 k = 0.50 μm
For Incandescent ( i ) = 2898 μm *k / 2900 k = 1 μm
Answer:
the rate of increase of radius is dR/dt = 0.804 m/hour = 80.4 cm/hour
Explanation:
the slick of oil can be modelled as a cylinder of radius R and thickness h, therefore the volume V is
V = πR² * h
thus
h = V / (πR²)
Considering that the volume of the slick remains constant, the rate of change of radius will be
dh/dt = V d[1/(πR²)]/dt
dh/dt = (V/π) (-2)/R³ *dR/dt
therefore
dR/dt = (-dh/dt)* (R³/2) * (π/V)
where dR/dt = rate of increase of the radius , (-dh/dt)= rate of decrease of thickness
when the radius is R=8 m , dR/dt is
dR/dt = (-dh/dt)* (R³/2) * (π/V) = 0.1 cm/hour *(8m)³/2 * π/1m³ *(1m/100 cm)= 0.804 m/hour = 80.4 cm/hour