Answer:
80.1 grams
Explanation:
Find the molar mass of CH3OH first by using the periodic table values.
12.011 g/mol C + (1.008*3 g/mol H) + 15.999g/mol O + 1.008 g/mol H
=32.042 so that is the molar mass
Now that you have 2.50 moles of CH3OH, you can calculate the mass in g
2.50molCH3OH * (32.042g CH3OH / 1 mol CH3OH) = 80.105
32.042g / 1 mol is the same as 32.042 g/mol
Since there are 3 sig figs in the problem (2.50 has 3 sig figs), you round to 80.1 g CH3OH
The atmosphere of earth is made of five main layers.
1) Troposphere : This is the lowest part of the atmosphere. Most of the air that makes up the atmosphere is present in this layer.
2) Stratosphere : This layer is present above troposphere and extends up to 50 km. It contains ozone layer which prevents the harmful ultraviolet rays from the sun from entering the lower troposphere
3) Mesosphere : The layer above stratosphere is known as mesosphere.
4) Thermosphere : The region lies above mesosphere.
5) Exosphere : The is the outermost region of the atmosphere.
From the above discussion we can see that the layer that lies between exosphere and mesosphere is Thermosphere
Because the pot isn’t water it just gets really hot and you can burn yourself if you touch it
Answer:
The total energy of the photons detected in one hour is 7.04*10⁻¹¹ J
Explanation:
The energy carried by electromagnetic radiation is displaced by waves. This energy is not continuous, but is transmitted grouped into small "quanta" of energy called photons. The energy (E) carried by electromagnetic radiation can be measured in Joules (J). Frequency (ν or f) is the number of times a wave oscillates in one second and is measured in cycles / second or hertz (Hz). The frequency is directly proportional to the energy carried by a radiation, according to the equation: E = h.f, (where h is the Planck constant = 6.63 · 10⁻³⁴ J / s).
Wavelength is the minimum distance between two successive points on the wave that are in the same state of vibration. it is expressed in units of length (m). In light and other electromagnetic waves that propagate at the speed of light (c), the frequency would be equal to the speed of light (≈ 3 × 10⁸ m / s) between the wavelength :

So:

In this case, the wavelength is 3.35mm=3.35*10⁻³m and the energy per photon is:

E=5.93*10⁻²³ 
The detector is capturing 3.3*10⁸ photons per second. So, in 1 hour:

E=7.04*10⁻¹¹ 
The total energy of the photons detected in one hour is 7.04*10⁻¹¹ J