Answer:
Step-by-step explanation:
Numerator
sin
x
cos
y
+
cos
x
sin
y
−
[
sin
x
cos
y
−
cos
x
sin
y
)
=
sin
x
cos
y
+
cos
x
sin
y
−
sin
x
cos
y
+
cos
x
sin
y
=
2
cos
x
sin
y
Denominator
cos
x
cos
y
−
sin
x
sin
y
+
cos
x
cos
y
+
sin
x
sin
y
=
cos
x
cos
y
−
sin
x
sin
y
+
cos
x
cos
y
+
sin
x
sin
y
=
2
cos
x
cos
y
---------------------------------------------------------------
left side can now be expressed as
2
cos
x
sin
y
2
cos
x
cos
y
=
2
cos
x
sin
y
2
cos
x
cos
y
=
sin
y
cos
y
and
sin
y
cos
y
=
tan
y
=
right side hence proved
The equations of the functions are y = -4(x + 1)^2 + 2, y = 2(x - 2)^2 + 1 and y = -(x - 1)^2 - 2
<h3>How to determine the functions?</h3>
A quadratic function is represented as:
y = a(x - h)^2 + k
<u>Question #6</u>
The vertex of the graph is
(h, k) = (-1, 2)
So, we have:
y = a(x + 1)^2 + 2
The graph pass through the f(0) = -2
So, we have:
-2 = a(0 + 1)^2 + 2
Evaluate the like terms
a = -4
Substitute a = -4 in y = a(x + 1)^2 + 2
y = -4(x + 1)^2 + 2
<u>Question #7</u>
The vertex of the graph is
(h, k) = (2, 1)
So, we have:
y = a(x - 2)^2 + 1
The graph pass through (1, 3)
So, we have:
3 = a(1 - 2)^2 + 1
Evaluate the like terms
a = 2
Substitute a = 2 in y = a(x - 2)^2 + 1
y = 2(x - 2)^2 + 1
<u>Question #8</u>
The vertex of the graph is
(h, k) = (1, -2)
So, we have:
y = a(x - 1)^2 - 2
The graph pass through (0, -3)
So, we have:
-3 = a(0 - 1)^2 - 2
Evaluate the like terms
a = -1
Substitute a = -1 in y = a(x - 1)^2 - 2
y = -(x - 1)^2 - 2
Hence, the equations of the functions are y = -4(x + 1)^2 + 2, y = 2(x - 2)^2 + 1 and y = -(x - 1)^2 - 2
Read more about parabola at:
brainly.com/question/1480401
#SPJ1
A. Yes
B. Yes
C. Yes
D. No
Me and my friend think that's the answer hope this helps I don't brainiest just trying to help
Answer:
shorter piece = 6. longer piece = 12
Step-by-step explanation:
short piece = s
long piece = l
l+s= 18
l= 6+s , substitute
6+s+s = 18
6+2s= 18
2s= 18-6
2s= 12
s=12/2
s= 6= shorter piece
l= 6+s
l= 6+6= 12 = longer piece