Answer:
E. ![\frac{2}{3}](https://tex.z-dn.net/?f=%5Cfrac%7B2%7D%7B3%7D)
Step-by-step explanation:
Consider a circle having centre P and radius 20 inches,
So, the area of the circle,
![A=\pi (20)^2\text{ square inches}](https://tex.z-dn.net/?f=A%3D%5Cpi%20%2820%29%5E2%5Ctext%7B%20square%20inches%7D)
Also, suppose points Q and R are on the circumference,
i.e. PQ = PR = 20 inches,
If QR = 20 inches,
So, triangle PQR is an equilateral triangle,
⇒ m∠RPQ = 60°,
Now, suppose R' is another point on the circle,
Such that, ΔPQR ≅ Δ PQR',
⇒ m∠QPR' = 60°,
Thus, minor angle, m∠RPR' = m∠RPQ + m∠QPR' = 60° + 60° = 120°,
⇒ major angle, m∠RPR' = 360° - 120° = 240°,
So, the area of the circle where a point on the circumference is closer to P than it is to Q
![=\frac{240^{\circ}}{360^{\circ}}\pi (20)^2](https://tex.z-dn.net/?f=%3D%5Cfrac%7B240%5E%7B%5Ccirc%7D%7D%7B360%5E%7B%5Ccirc%7D%7D%5Cpi%20%2820%29%5E2)
![=\frac{2}{3}\pi (20)^2](https://tex.z-dn.net/?f=%3D%5Cfrac%7B2%7D%7B3%7D%5Cpi%20%2820%29%5E2)
Hence, the probability that a point is closer to P than it is to Q = ![\frac{\frac{2}{3}\pi (20)^2}{\pi (20)^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cfrac%7B2%7D%7B3%7D%5Cpi%20%2820%29%5E2%7D%7B%5Cpi%20%2820%29%5E2%7D)
![=\frac{2}{3}](https://tex.z-dn.net/?f=%3D%5Cfrac%7B2%7D%7B3%7D)
i.e. OPTION E is correct.