Explanation:
The dipoles in CO are in opposite directions so they cancel each other out, although CO₂ has polar bonds, it is a nonpolar molecule. Therefore, the only intermolecular forces are London dispersion forces. Water (H2O) has hydrogen bond present which is a polar bond which has a high intermolecular force.
Water which has high intermolecular force will require more energy that is a higher temperature to overcome these attractions and are pulled together tightly to form a solid at higher temperatures, so their freezing point is higher.
As the temperature of a liquid decreases, the average kinetic energy of the molecules decreases and they move more slowly.
CO with lower intermolecular forces will not solidify until the temperature is lowered further.
Since the substance absorbs heat, it is expected that the temperature will rise. The formula for the internal energy of a substance is given by the equation:
ΔU = mCpΔT
where:
ΔU = internal energy
m = mass of substance
Cp = specific heat capacity of substance
ΔT = change in temperature
ΔU = 2722 Joules = 16.2 grams (9.22 J/g-°C) (Tf - 26°C)
This gives a final temperature of Tf = 44.22 °C