The percent yield of the reaction : 89.14%
<h3>Further explanation</h3>
Reaction of Ammonia and Oxygen in a lab :
<em>4 NH₃ (g) + 5 O₂ (g) ⇒ 4 NO(g)+ 6 H₂O(g)</em>
mass NH₃ = 80 g
mol NH₃ (MW=17 g/mol):

mass O₂ = 120 g
mol O₂(MW=32 g/mol) :

Mol ratio of reactants(to find limiting reatants) :

mol of H₂O based on O₂ as limiting reactants :
mol H₂O :

mass H₂O :
4.5 x 18 g/mol = 81 g
The percent yield :

Answer:

Explanation:
2NO₂ ⇌ N₂O₄
E/mol·L⁻¹: 0.058 0.012
K_{\text{eq}} = \dfrac{\text{[N$_{2}$O$_{4}$]}}{\text{[NO$_{2}$]$^{2}$}} = \dfrac{0.012}{0.058^{2}} = \mathbf{3.6}
\\\\
\text{The $K_{\text{eq}}$ value would be $\boxed{\mathbf{3.6}}$}
There are three ways that scientists have proved that these sub-atomic particles exist. They are direct observation, indirect observation or inferred presence and predictions from theory or conjecture. Scientists in the 1800's were able to infer a lot about the sub-atomic world from chemistry.