Explanation:
Calcium chloride is an ionic compound as it is formed by transfer of an electron to each chlorine atom.
So, being an ionic compound calcium chloride is able to dissociate completely into water.
Hence, the dissociation reaction will be as follows.
Since, two electrons has been lost by single calcium atom. Therefore, calcium atom will have a charge of +2.
Thus, we can conclude that the charge on the calcium ion, in elementary units is +2.
Answer: Option (a) is the correct answer.
Explanation:
Atomic number is the sum of only total number of protons present in an element. Whereas mass number is the sum of total number of both protons and neutrons present in an element.
For example, given atom has mass number as 15 and its atomic number is 7.
Therefore, number of neutrons present in it will be calculated as follows.
Mass number = no. of protons + no. of neutrons
15 = 7 + no. of neutrons
no. of neutrons = 15 - 7
= 8
Thus, we can conclude that the given atom contains 8 neutrons in the nucleus.
Answer:
14,448 J of heat would it take to completely vaporize 172 g of this liquid at its boiling point.
Explanation:
The heat Q that is necessary to provide for a mass m of a certain substance to change phase is equal to Q = m*L, where L is called the latent heat of the substance and depends on the type of phase change.
During the evaporation process, a substance goes from a liquid to a gaseous state and needs to absorb a certain amount of heat from its immediate surroundings, which results in its cooling. The heat absorbed is called the heat of vaporization.
So, it is called "heat of vaporization", the energy required to change 1 gram of substance from a liquid state to a gaseous state at the boiling point.
In this case, being:
- L= 84
and replacing in the expression Q = m*L you get:
Q=172 g*84
Q=14,448 J
<u><em>14,448 J of heat would it take to completely vaporize 172 g of this liquid at its boiling point.</em></u>
Answer:
The process of dissolving is exothermic when more energy is released when water molecules “bond” to the solute than is used to pull the solute apart. Because more energy is released than is used, the molecules of the solution move faster, making the temperature increase.
Project the image Endothermic Dissolving.
The process of dissolving is endothermic when less energy is released when water molecules “bond” to the solute than is used to pull the solute apart. Because less energy is released than is used, the molecules of the solution move more slowly, making the temperature decrease.