Answer:
When n = 1, the reaction is of the First Order
Explanation:
Find attach the solution
Atomic mass Ar => 39.948 a.m.u
39.948 g --------------- 6.02x10²³ atoms
?? g -------------------- 3.8x10²⁴ atoms
(3.8x10²⁴) x 39.948 / 6.02x10²³ => 250 g
hope this helps!
Sodium Chloride also known as table salt, the sodium has a positive charge and the chloride a negative so after ionization that leaves you with two negative charges because it takes the salt away. possibly disforming the atoms.<span />
First calculate for the molar mass of the given formula unit, CaCO₃. This can be done by adding up the product when the number of atom is multiplied to its individual molar mass as shown below.
molar mass of CaCO₃ = (1 mol Ca)(40 g Ca/mol Ca) + (1 mol C)(12 g of C/1 mol of C) + (3 mols of O)(16 g O/1 mol O) = 100 g/mol of CaCO₃
Then, divide the given amount of substance by the calculated molar mass.
number of moles = (20 g)(1 mol of CaCO₃/100 g)
number of moles = 0.2 moles of CaCO₃
<em>Answer: 0.2 moles</em>
Answer:
See Explanation
Explanation:
What Adi failed to realize is that the oily substance that was obtained from lavender consists of a mixture of substances. It is not only the required fragrance that is present in the extract.
This experiment will not work because those other components in the mixture may be erroneously identified when they show up in the mass spectrum of the extract and may be mistaken for the fragrance in question.
Hence the experiment will not work because; if some kind of separation method is not used to identify other impurities in the oil, many other substances may be mistaken for the actual fragrance.