1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Talja [164]
4 years ago
7

A 600-ha farmland receives annual rainfall of 2500 mm. There is a river flowing through the farmland with an inflow rate of 5 m3

/s and outflow rate of 4 m3/s. The annual water storage is the farmland increases by 2.5 x 106 m3. Based on the hydrologic budget equation, determine the annual evapotranspiration amount in mm. (1 ha
Engineering
1 answer:
shepuryov [24]4 years ago
3 0

Answer:

E = 7333.33 mm

Explanation:

The annual evapotranspiration (E) amount can be calculated using the water budget equation:

P*A + Q_{in}*\Delta t = E*A + \Delta S + Q_{out}*\Delta t   (1)

<u>Where</u>:

<em>P: is the precipitation = 2500 mm, </em>

<em>Q(in): is the water flow into the river of the farmland = 5 m³/s, </em>

<em>ΔS: is the change in water storage = 2.5x10⁶ m³,  </em>

<em>Q(out): is the water flow out of the river of the farmland = 4 m³/s.</em>

<em>Δt: is the time interval = 1 year = 3.15x10⁷ s </em>

<em>A: is the surface area of the farmland = 6.0x10⁶ m² </em>  

Solving equation (1) for ET we have:

E = \frac{P*A + Q_{in}*\Delta t - \Delta S - Q_{out}*\Delta t}{A}

E = \frac{2.5 m \cdot 6.0 \cdot 10^{6} m^{2} + 5 m^{3}/s \cdot 3.15 \cdot 10^{7} s - 2.5 \cdot 10^{6} m^{3} - 4 m^{3}/s \cdot 3.15 \cdot 10^{7} s}{6.0\cdot 10^{6} m^{2}}                                  

E = 7333.33 mm

Therefore, the annual evapotranspiration amount is 7333.33 mm.

I hope it helps you!  

You might be interested in
Can you guys please introduce yourself​
EleoNora [17]

Answer: why?

Explanation:

6 0
3 years ago
Read 2 more answers
A gasoline engine has a piston/cylinder with 0.1 kg air at 4 MPa, 1527◦C after combustion, and this is expanded in a polytropic
Roman55 [17]

Answer:

The expansion work is 71.24 kJ and heat transfer is -16.89 kJ

Explanation:

From ideal gas law,

Initial volume (V1) = nRT/P

n is the number of moles of air in the cylinder = mass/MW = 0.1/29 = 0.00345 kgmol

R is gas constant = 8314.34 J/kgmol.K

T is initial temperature = 1527 °C = 1527+273 = 1800 K

P is initial pressure = 4 MPa = 4×10^6 Pa

V1 = 0.00345×8314.34×1800/(4×10^6) = 0.013 m^3

V2 = 10×V1 = 10×0.013 = 0.13 m^3

The process is a polytropic expansion process

polytropic exponent (n) = 1.5

P2 = P1(V1/V2)^n = 4×10^6(0.013/0.13)^1.5 = 1.26×10^5 Pa

Expansion work = (P1V1 - P2V2) ÷ (n - 1) = (4×10^6 × 0.013 - 1.26×10^5 × 0.13) ÷ (1.5 - 1) = 35620 ÷ 0.5 = 71240 J = 71240/1000 = 71.24 kJ

Heat transfer = change in internal energy + expansion work

change in internal energy (∆U) = Cv(T2 - T1)

T2 = PV/nR = 1.26×10^5 × 0.13/0.00345×8314.34 = 571 K

Cv = 20.785 kJ/kgmol.K

∆U = 20.785(571 - 1800) = -25544.765 kJ/kgmol × 0.00345 kgmol = -88.13 kJ

Heat transfer = -88.13 + 71.24 = -16.89 kJ

5 0
3 years ago
The following electrical characteristics have been determined for both intrinsic and p-type extrinsic gallium antimonide (GaSb)
xxTIMURxx [149]

Answer:

0.5m^2/Vs and 0.14m^2/Vs

Explanation:

To calculate the mobility of electron and mobility of hole for gallium antimonide we have,

\sigma = n|e|\mu_e+p|e|\mu_h (S)

Where

e= charge of electron

n= number of electrons

p= number of holes

\mu_e= mobility of electron

\mu_h=mobility of holes

\sigma = electrical conductivity

Making the substitution in (S)

Mobility of electron

8.9*10^4=(8.7*10^{23}*(-1.602*10^{-19})*\mu_e)+(8.7*10^{23}*(-1.602*10^{-19})*\mu_h)

0.639=\mu_e+\mu_h

Mobility of hole in (S)

2.3*10^5 = (7.6*10^{22}*(-1.602*10^{-19})*\mu_e)+(1*10^{25}*(-1.602*10^{-19}*\mu_h))

0.1436 = 7.6*10^{-3}\mu_e+\mu_h

Then, solving the equation:

0.639=\mu_e+\mu_h (1)

0.1436 = 7.6*10^{-3}\mu_e+\mu_h (2)

We have,

Mobility of electron \mu_e = 0.5m^2/V.s

Mobility of hole is \mu_h = 0.14m^2/V.s

6 0
3 years ago
What are the maximum weights for single, tandem and 5-axle combinations?
belka [17]
Hauling Vehicles that include a semitrailer manufactured prior to or in the model year of 2024, and registered in Illinois prior to January 1, 2025, having 5 axles with a distance of 42 feet or less between extreme axles, may not exceed the following maximum weights: 20,000 pounds on a single axle; 34,000 pounds
7 0
3 years ago
We are given a CSP with only binary constraints. Assume we run backtracking search with arc consistency as follows. Initially, w
sweet-ann [11.9K]
We are given a CSP with only binary can concentrate assume we run backtrackingSearch with ARC
8 0
3 years ago
Other questions:
  • A vacuum pump is used to drain a basement of 20 °C water (with a density of 998 kg/m3 ). The vapor pressure of water at this tem
    13·1 answer
  • Compute the fundamental natural frequency of the transverse vibration of a uniform beam of rectanqular cross section, with one e
    11·2 answers
  • True or False: Drag and tailwind are examples of a contact force.<br> tyy guyss
    14·1 answer
  • 2. In the above figure, what type of cylinder arrangement is shown in the figure above?
    9·2 answers
  • How do I cancel my subscription
    12·2 answers
  • If the outside diameter of a pipe is 2 m, the length of a piece of insulation wrapped around it would be a)- 628 cm b)- 12.56 m.
    15·1 answer
  • When an emergency vehicle approaches you from in front or behind you, what should you do?
    14·1 answer
  • Is the gap store an example of commercial construction? Yes or no
    10·1 answer
  • Please what is dif<br>ference between building technology and building engineering.​
    14·2 answers
  • Consider the following example: The 28-day compressive strength should be 4,000 psi. The slump should be between 3 and 4 in. and
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!