1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naily [24]
3 years ago
14

When an emergency vehicle approaches you from in front or behind you, what should you do?

Engineering
1 answer:
lilavasa [31]3 years ago
3 0

Answer:

Pull over to the edge of the roadway, clear of intersections, and stop.

Remain there until the emergency vehicle has passed. ...

Keep a foot on the brake so the brake lights let emergency vehicle drivers know you have stopped.

Explanation:

You might be interested in
Find the remaining trigonometric functions of 0 if
garik1379 [7]

Answer:

cosΘ=−√558

tanΘ=−3√5555

cscΘ=83

secΘ=−8√5555

cotΘ=−√553

8 0
3 years ago
According to fire regulations in a town, the pressure drop in a commercial steel, horizontal pipe must not exceed 2.0 psi per 25
bonufazy [111]

Answer:

6.37 inch

Explanation:

Thinking process:

We need to know the flow rate of the fluid through the cross sectional pipe. Let this rate be denoted by Q.

To determine the pressure drop in the pipe:

Using the Bernoulli equation for mass conservation:

\frac{P1}{\rho } + \frac{v_{2} }{2g} +z_{1}  = \frac{P2}{\rho } + \frac{v2^{2} }{2g} + z_{2} + f\frac{l}{D} \frac{v^{2} }{2g}

thus

\frac{P1-P2}{\rho }  = f\frac{l}{D} \frac{v^{2} }{2g}

The largest pressure drop (P1-P2) will occur with the largest f, which occurs with the smallest Reynolds number, Re or the largest V.

Since the viscosity of the water increases with temperature decrease, we consider coldest case at T = 50⁰F

from the tables

Re= 2.01 × 10⁵

Hence, f = 0.018

Therefore, pressure drop, (P1-P2)/p = 2.70 ft

This occurs at ae presure change of 1.17 psi

Correlating with the chart, we find that the diameter will be D= 0.513

                                                                                                      = <u>6.37 in Ans</u>

7 0
4 years ago
Whats the difference between GeForce GTX 1060 and Geforce GTX 3060? Is there any big changes to FPS and other settings?
ZanzabumX [31]

Answer:

uhhhhh, are you kidding? a GTX 3060 is far better than a 1060 ding dong

Explanation:

7 0
3 years ago
Read 2 more answers
If you get a flat in the front of your car, your car will:
juin [17]

Answer:

stop and might even crash

Explanation:

6 0
3 years ago
(35-39) A student travels on a school bus in the middle of winter from home to school. The school bus temperature is 68.0° F. Th
arlik [135]

Answer:

The net energy transfer from the student's body during the 20-min ride to school is 139.164 BTU.

Explanation:

From Heat Transfer we determine that heat transfer rate due to electromagnetic radiation (\dot Q), measured in BTU per hour, is represented by this formula:

\dot Q = \epsilon\cdot A\cdot \sigma \cdot (T_{s}^{4}-T_{b}^{4}) (1)

Where:

\epsilon - Emissivity, dimensionless.

A - Surface area of the student, measured in square feet.

\sigma - Stefan-Boltzmann constant, measured in BTU per hour-square feet-quartic Rankine.

T_{s} - Temperature of the student, measured in Rankine.

T_{b} - Temperature of the bus, measured in Rankine.

If we know that \epsilon = 0.90, A = 16.188\,ft^{2}, \sigma = 1.714\times 10^{-9}\,\frac{BTU}{h\cdot ft^{2}\cdot R^{4}}, T_{s} = 554.07\,R and T_{b} = 527.67\,R, then the heat transfer rate due to electromagnetic radiation is:

\dot Q = (0.90)\cdot (16.188\,ft^{2})\cdot \left(1.714\times 10^{-9}\,\frac{BTU}{h\cdot ft^{2}\cdot R^{4}} \right)\cdot [(554.07\,R)^{4}-(527.67\,R)^{4}]

\dot Q = 417.492\,\frac{BTU}{h}

Under the consideration of steady heat transfer we find that the net energy transfer from the student's body during the 20 min-ride to school is:

Q = \dot Q \cdot \Delta t (2)

Where \Delta t is the heat transfer time, measured in hours.

If we know that \dot Q = 417.492\,\frac{BTU}{h} and \Delta t = \frac{1}{3}\,h, then the net energy transfer is:

Q = \left(417.492\,\frac{BTU}{h} \right)\cdot \left(\frac{1}{3}\,h \right)

Q = 139.164\,BTU

The net energy transfer from the student's body during the 20-min ride to school is 139.164 BTU.

7 0
3 years ago
Other questions:
  • Air at 38°C and 97% relative humidity is to be cooled to 14°C and fed into a plant area at a rate of 510m3/min. (a) Calculate th
    11·1 answer
  • Choose the best data type for each of the following so that any reasonable value is accommodated but no memory storage is wasted
    5·1 answer
  • suppose a wheel with a 15 inch diameter is used to turn a water valve stem with a radius of .95 inches. What is the Mechanical a
    15·1 answer
  • Consider an InSb NW with ballistic mean free path of 150nm. Calculate the current through a 250nm long InSb NW when a 100mV bias
    6·1 answer
  • Write a program that asks the user for the name of a file. The program should display the number of words that the file contains
    7·1 answer
  • Sam promises to pay Sandy $2,000 in four years and another $3,000 four years later for a loan of $2,000 from Sandy today. What i
    8·1 answer
  • 1) What output force (Fout) is produced if the lever arm length (rout) is 100 mm?
    13·2 answers
  • Is there anyone who can help me with welding?
    7·1 answer
  • The product of two factors is 4,500. If one of the factors is 90, which is the other factor?
    15·1 answer
  • Engineers designed a motorcycle helmet from a long-lasting and safe material that protects the wearer from accidents and excessi
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!