1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kobusy [5.1K]
3 years ago
14

True or False: Drag and tailwind are examples of a contact force. tyy guyss

Engineering
1 answer:
zloy xaker [14]3 years ago
8 0

Answer:

False

Explanation:

You might be interested in
Contrast moral and immoral creativity and innovation<br>​
Archy [21]

Moral creativity and innovation are based on original discoveries,  whereas immoral innovation is based on unscrupulous actions.

<h3>What is innovation?</h3>

Innovation refers to the practices aimed at developing new products and services for the well-being of society.

Moral innovation is an expression generally used to describe technological advancements based on intellectual property rights.

In conclusion, moral creativity and innovation are based on original discoveries,  whereas immoral innovation is based on unscrupulous actions.

Learn more about innovation here:

brainly.com/question/19969274

#SPJ1

7 0
2 years ago
Consider the circuit below where R1 = R4 = 5 Ohms, R2 = R3 = 10 Ohms, Vs1 = 9V, and Vs2 = 6V. Use superposition to solve for the
VladimirAG [237]

Answer:

The value of v2 in each case is:

A) V2=3v for only Vs1

B) V2=2v for only Vs2

C) V2=5v for both Vs1 and Vs2

Explanation:

In the attached graphic we draw the currents in the circuit. If we consider only one of the batteries, we can consider the other shorted.

Also, what the problem asks is the value V2 in each case, where:

V_2=I_2R_2=V_{ab}

If we use superposition, we passivate a battery and consider the circuit affected only by the other battery.

In the first case we can use an equivalent resistance between R2 and R3:

V_{ab}'=I_1'R_{2||3}=I_1'\cdot(\frac{1}{R_2}+\frac{1}{R_3})^{-1}

And

V_{S1}-I_1'R_1-I_1'R_4-I_1'R_{2||3}=0 \rightarrow I_1'=0.6A

V_{ab}'=I_1'R_{2||3}=3V=V_{2}'

In the second case we can use an equivalent resistance between R2 and (R1+R4):

V_{ab}''=I_3'R_{2||1-4}=I_3'\cdot(\frac{1}{R_2}+\frac{1}{R_1+R_4})^{-1}

And

V_{S2}-I_3'R_3-I_3'R_{2||1-4}=0 \rightarrow I_3'=0.4A

V_{ab}''=I_3'R_{2||1-4}=2V

If we consider both batteries:

V_2=I_2R_2=V_{ab}=V_{ab}'+V_{ab}''=5V

7 0
4 years ago
Hot carbon dioxide exhaust gas at 1 atm is being cooled by flat plates. The gas at 220 °C flows in parallel over the upper and l
sergeinik [125]

The local convection heat transfer coefficient at 1 m from the leading edge is  0.44 \frac{W}{m^{2} \times K} ,  the average convection heat transfer coefficient over the entire plate is  0.293 \frac{W}{m^{2} \times K}and the total heat flux transfer to the plate is 61.6 KJ.

Explanation:

It is case of heat and mass transfer in which due to temperature difference between gas  and surface. Further temperature  boundary layer will developed on flat plate in longitudinal direction.  

Hot carbon dioxide exhaust gas

physical properties

r= 1.05 \frac{kg}{m^{3}}

c_p = 1.02 \frac{kJ}{Kg \times K}

m= 231 \times 10^{7}  \frac{N \times s }{m^2}

υ = 21.8 \times 10^{6}  \frac{m^2}{s}

k = 32.5 \times 10^{3} \frac{W}{m \times K}

\alpha = 30.1 \times 10^{6} \frac{m^{2}}{s}

Pr = 0.725

Apart from these other data arr given below,

v= 3 \frac{m}{s}  \\ p= 1 atm \\ L_c = 1.5m \\T_g= 220 C \\ T_s = 80 C

To find the local convection heat transfer coefficient at 1 m from the leading edge, we use correlation used for laminar flow over flat plate,

Nu = \frac{ h \times L }{k}  = 0.332 \times (Re^{\frac{1}{2} }) \times (Pr^{\frac{1}{3} })

where h= Average heat transfer coefficient

           L= Length of a plate

           k= Thermal Conductivity of carbon dioxide

           Re = Reynold's Number

           Pr  = Prandtle Number

(a) Convection heat transfer coefficient at 1 m from the leading edge

    is referred as local convection heat transfer coefficient.

   

   To find convection heat transfer coefficient at 1 m from leading edge,

  Nu = \frac{ h_local \times L }{k}  = 0.332 \times (Re^{\frac{1}{2} }) \times (Pr^{\frac{1}{3} })

  Here, first we have to find Re and Pr,

   Re = \frac{r \times v \times L}{m}

   Re = \frac{1.0594 \times 3 \times 1}{231 \times 10^{7}}

   Re = 20.63 \times  10^{-10}

   Pr number is take from physical property data and Pr is 0.725.

   Putting value of Re and Pr in main equation,

   we get

   Nu = \frac{ h_local \times 1 }{32.5 \times 10^{3}}  = 0.332 \times ( (20.63 \times 10^{-10})^{\frac{1}{2} }) \times (0.725^{\frac{1}{3} })

    h_local   = 32.5 \times 10^{3} \times  0.332 \times ( (20.63 \times 10^{-10})^{\frac{1}{2} }) \times (0.725^{\frac{1}{3} })

    h_local   =  0.44 \frac{W}{m^{2} \times K}

(b)  To find average convection heat transfer coefficient,

      it can be find out as case (a), only difference is that instead of L=1 m,        L=1.5 m would come,  

   Therefore,

    Nu = \frac{ h \times 1.5 }{32.5 \times 10^{3}}  = 0.332 \times ( (20.63 \times 10^{-10})^{\frac{1}{2} }) \times (0.725^{\frac{1}{3} })

    Finally,

      h  = \frac{0.44}{1.5}

      h  = 0.293 \frac{W}{m^{2} \times K}

(C) Total heat flux transfer to the plate is found out by,

     Q = h \times (T_g - T_s)

     Q = 0.293 \times (220-80) \\ Q= 0.293 \times 140  \\ Q= 61.6 KJ

     

     

   

   

     

   

     

   

   

 

   

   

   

   

8 0
3 years ago
The drag force, Fd, imposed by the surrounding air on a
Ad libitum [116K]

Answer:

a)  23.551 hp

b)  516.89 hp

Explanation:

<u>given:</u>

F_{d} =\frac{1}{2} C_{d} A_{p} V^{2} \\V_{a}=25 m/hr-->25*\frac{5280}{3600} =36.67ft/s\\V_{b}=70 m/hr-->70*\frac{5280}{3600} =102.67ft/s\\\\C_{d}=.28\\A=25 ft^2\\p=.075lb/ft^2

<u>required:</u>

the power in hp

<u>solution:</u>

(F_{d})_{a}  =\frac{1}{2} C_{d} A_{p} V_{a} ^{2}.............(1)

by substituting in the equation (1)

         =353.27 lbf

(F_{d})_{b}  =\frac{1}{2} C_{d} A_{p} V_{b} ^{2}..........(2)

by substituting in the equation (2)

         = 2769.29 lbf

power is defined by

             P=F.V

     P_{a}=353.27*36.67

           =12954.411 lbf.ft/s

           =12954.411*.001818

           =23.551 hp

      P_{a}=2769.29*102.67

           = 284323 lbf.ft/s

           = 284323*.001818

           = 516.89 hp

3 0
3 years ago
What are the four causes of electrical faults?
Arada [10]

Answer:

Electrical faults are also caused due to human errors such as selecting improper rating of equipment or devices, forgetting metallic or electrical conducting parts after servicing or maintenance, switching the circuit while it is under servicing, etc.

Explanation:

6 0
3 years ago
Other questions:
  • To make 1000 containers of ice cream you need: 600 gallons of milk, 275 gallons of cream, and 120 gallons of flavor. Each ingred
    12·1 answer
  • Technician A says that when using an impact wrench to remove a bolt from the front of an engine's crankshaft, the crankshaft mus
    15·1 answer
  • A six-lane freeway (three lanes in each direction) currently operates at maximum LOS C conditions. The lanes are 11 ft wide, the
    5·1 answer
  • Consider 1.0 kg of austenite containing 1.15 wt% C, cooled to below 727C (1341F). (a) What is the proeutectoid phase? (b) How
    14·1 answer
  • The working section of a transonic wind tunnel has a cross-sectional area 0.5 m2. Upstream, where the cross-section area is 2 m2
    10·1 answer
  • A banked highway is designed for traffic moving at v = 88 km/h. The radius of the curve r = 314 m. show answer No Attempt 50% Pa
    5·2 answers
  • A _______ contact allows current to flow when the switch's operator is not activated.?
    6·1 answer
  • Pointttttttttttttssssssssssss
    12·1 answer
  • A 75-hp motor that has an efficiency of 91.0% is worn-out and is replaced by a motor that has a high efficiency 75-hp motor that
    6·1 answer
  • A high compression ratio may result in;
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!