Answer:
12.332 KW
The positive sign indicates work done by the system ( Turbine )
Explanation:
Stagnation pressure( P1 ) = 900 kPa
Stagnation temperature ( T1 ) = 658K
Expanded stagnation pressure ( P2 ) = 100 kPa
Expansion process is Isentropic, also assume steady state condition
mass flow rate ( m ) = 0.04 kg/s
<u>Calculate the Turbine power </u>
Assuming a steady state condition
( p1 / p2 )^(r-1/r) = ( T1 / T2 )
= (900 / 100)^(1.4-1/1.4) = ( 658 / T2 )
= ( 9 )^0.285 = 658 / T2
∴ T2 = 351.22 K
Finally Turbine Power / power developed can be calculated as
Wt = mCp ( T1 - T2 )
= 0.04 * 1.005 ( 658 - 351.22 )
= 12.332 KW
The positive sign indicates work done by the system ( Turbine )
Answer:
Given,
Temperature;
T = 393;;K
Convert to Celcius;
T = (393-273) degrees
T = 120°C
Using Table A-4 (Saturated water - Temperature table), at T = 120 C;
vf = 0.001060 m³/kg
vg = 0.89133 m³/kg
Quality is given as;
75% = 0.75
Specific volume is given as;
v = vf + x (vg - vf) = 0.001060 + 0.75(0.89133 _ 0.001060)
v= 0.66876 m³/kg
We know;
v = V/m
0.66876 = 100/m
m = 149.53 kg
Answer:
to make the bace of a building more sturdy
Explanation:
example: the bace of the empire state building is stone very sturdy
Answer:
F = 0.0022N
Explanation:
Given:
Surface area (A) = 4,000mm² = 0.004m²
Viscosity = µ = 0.55 N.s/m²
u = (5y-0.5y²) mm/s
Assume y = 4
Computation:
F/A = µ(du/dy)
F = µA(du/dy)
F = µA[(d/dy)(5y-0.5y²)]
F = (0.55)(0.004)[(5-1(4))]
F = 0.0022N
Answer:
The flexural strength of a specimen is = 78.3 M pa
Explanation:
Given data
Height = depth = 5 mm
Width = 10 mm
Length L = 45 mm
Load = 290 N
The flexural strength of a specimen is given by


78.3 M pa
Therefore the flexural strength of a specimen is = 78.3 M pa