The organism would no longer grow.
0.3147 concentration (in moles/l) of a saline (NaCl) solution will provide an isotonic eyedrop solution.
Isotonic eye drops
Because it might result in eye discomfort or tissue damage if it is not maintained, isotonicity is regarded as a crucial component of ophthalmic medicines. A few drops of blood are mixed with the test preparation before being examined and judged under a microscope at a magnification of 40. Isotonic solutions are those that have the same amount of water and other solutes in them as the cytoplasm of a cell. Since there is no net gain or loss of water, placing cells in an isotonic solution will not cause them to either shrink or swell.
We can calculate the osmotic pressure exerted by a solution using the following expression.
π = M . R . T
where,
π is the osmotic pressure
M is the molar concentration of the solution
R is the ideal gas constant
T is the absolute temperature
The absolute temperature is 37 + 273 = 310 K
π = M . R . T
8 = (X mol/L) . (0.082atm.L/mol.K) . 310 K = 0.3147 mol/L
To learn more about osmotic pressure refer:
brainly.com/question/5041899
#SPJ4
Answer:
heat increase, pressue loss, altitude gain,
Explanation:
Answer: b} The exact time when an individual atom will decay can be accurately predicted.
c} After each half-life, the amount of radioactive material is reduced by half.
Explanation:
All radioactive decay follows first order kinetics.
Rate law expression for first order kinetics is given by:
where,
k = rate constant
t = time taken for decay process
a = initial amount of the reactant
a - x = amount left after decay process
Expression for calculating half life, which is the time taken by the half of the reactants to decompose is:

The answer should be hydrogen bonding. Water only has oxygen and hydrogen in it, which are both nonmetals, so you know the answer cannot be metallic or ionic. It also cannot be nonpolar because the electronegativity of the oxygens will make the molecule polar. You can also know it is hydrogen bonding because it can only take place when a hydrogen is attached to an oxygen, fluorine, or nitrogen. These bonds are very strong attractions, so the molecules are extremely hard to pull apart, creating a high boiling point. Hope that helps!