Answer:
C) In[reactant] vs. time
Explanation:
For a first order reaction the integrated rate law equation is:

where A(0) = initial concentration of the reactant
A = concentration after time 't'
k = rate constant
Taking ln on both sides gives:
![ln[A] = ln[A]_{0}-kt](https://tex.z-dn.net/?f=ln%5BA%5D%20%3D%20ln%5BA%5D_%7B0%7D-kt)
Therefore a plot of ln[A] vs t should give a straight line with a slope = -k
Hence, ln[reactant] vs time should be plotted for a first order reaction.
Answer:
The solubility of the mineral compound X in the water sample is 0.0189 g/mL.
Explanation:
Step 1: Given data
The volume of water sample = 46.0 mL.
The weight of the mineral compound X after evaporation, drying, and washing = 0.87 g.
Step 2: Calculate the solubility of X in water
46.00 mL of water sample contains 0.87 g of the mineral compound X.
To calulate how many grams of the mineral compound 1.0 mL of water sample contains:
0.87 g/46.0 mL = 0.0189 g.
This means the solubility of the mineral compound X in the water sample is 0.0189 g/mL.
Three examples of environmental, industrial and bio-chemistry are listed below:
- Environmental chemistry: Contamination, Atmospheric Deposition, and Soil Pollution.
- industrial chemistry: industrial inorganic chemicals, industrial organic chemicals, and agricultural chemicals
- bio-chemistry: genetic, immunology, and enzymology
<h3>Meaning of Chemistry</h3>
Chemistry can be defined as a branch of science which is concerned with the substances matter is composed of, their properties and reactions,
Chemistry also deals with the use of such reactions to form new substances.
In conclusion, Three examples of environmental, industrial and bio-chemistry are listed anove
Learn more about chemistry: brainly.com/question/24419453
#SPJ1
Answer:
Explanation:
This type of experiment was carried out in 1960s on rodents, it was partially successful but was perceived impractical and dangerous for humans,it is possible theoretically.
Oxygen is broken down or dissolves in a thin film of fluid in the alveoli, surprisingly in normal breathing liquid composed of dissolved oxygen is involved. Evidently respiratory gas must be able to dissolve in this liquid and in concentration required to keep the partial pressure necessary to power diffusion.