Answer:
We have to add 9.82 grams of calcium acetate
Explanation:
Step 1: Data given
Molarity of the calcium acetate solution = 0.207 M
Volume = 300 mL = 0.300 L
Molar mass calcium acetate = 158.17 g/mol
Step 2: Calculate moles calcium acetate
Moles calcium acetate = molarity * volume
Moles calcium acetate = 0.207 M * 0.300 L
Moles calcium acetate = 0.0621 moles
Step 3: Calculate mass calcium acetate
Mass calcium acetate = moles * molar mass
Mass calcium acetate = 0.0621 moles * 158.17 g/mol
Mass calcium acetate = 9.82 grams
We have to add 9.82 grams of calcium acetate
Answer:
109.09°C
Explanation:
Given that:
the capacity of the cooling car system = 5.6 gal
volume of solute = volume of the water; since a 50/50 blend of engine coolant and water (by volume) is used.
∴ 
Afterwards, the mass of the solute and the mass of the water can be determined as shown below:
mass of solute = 


On the other hand; the mass of water = 


Molarity = 
= 
= 17.757 m
≅ 17.76 m
∴ the boiling point of the solution is calculated using the boiling‑point elevation constant for water and the Molarity.

where,
= 0.512 °C/m
= 100°C + 17.56 × 0.512
= 109.09 °C
Answer:
0.9 moles of water
Explanation:
Use mole ratios:
5 : 6
divide by 5 on both sides
1 : 1.2
multiply by 0.75 on both sides
0.75 : 0.9
So the result is 0.9 moles of water
(Please correct me if I'm wrong)
Answer : The molecular formula of the compound will be, 
Explanation :
Empirical formula : It is the simplest form of the chemical formula which depicts the whole number of atoms of each element present in the compound.
Molecular formula : it is the chemical formula which depicts the actual number of atoms of each element present in the compound.
For determining the molecular formula, we need to determine the valency which is multiplied by each element to get the molecular formula.
The equation used to calculate the valency is :

As we are given that the empirical formula of a compound is
and the molar mass of compound is, 90.09 gram/mol.
The empirical mass of
= 1(12) + 2(1) + 1(16) = 30 g/eq


Molecular formula = 
Thus, the molecular formula of the compound will be, 
It takes 21.3 days
<h3>Further explanation</h3>
Given
5 hr = 8 kg Alcohol
Required
Days to consume 1000 kg of glucose
Solution
Alcoholic fermentation⇒ glucose produces ethanol and carbon dioxide,
C₆H₁₂O₆ → 2 C₂H₅OH + 2CO₂
mol ethanol :

moles of glucose to produce 108.7 moles ethanol :

54.35 moles = 5 hours
moles of 1000 kg of glucose :

So for 5555.5 moles, it takes :
